ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



Задача 73754

Темы:   [ Параллелепипеды (прочее) ]
[ Остовы многогранных фигур ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Cерединный перпендикуляр и ГМТ ]
[ Сочетания и размещения ]
Сложность: 4+
Классы: 10,11

В пространстве заданы четыре точки, не лежащие в одной плоскости.
Сколько существует различных параллелепипедов, для которых эти точки служат вершинами?

Прислать комментарий     Решение

Задача 86941

Темы:   [ Свойства сечений ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

Через середины M и N рёбер соответственно AA1 и C1D1 параллелепипеда ABCDA1B1C1D1 проведена плоскость параллельно диагонали BD основания. Постройте сечение параллелепипеда этой плоскостью. В каком отношении она делит диагональ A1C ?
Прислать комментарий     Решение


Задача 109084

Темы:   [ Свойства сечений ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

Дан параллелепипед ABCDA1B1C1D1 . На рёбрах AD , A1D1 и B1C1 взяты точки M , L и K соответственно, причём B1K = A1L , AM = A1L . Известно, что KL = 2 . Найдите длину отрезка, по которому плоскость KLM пересекает параллелограмм ABCD .
Прислать комментарий     Решение


Задача 109346

Темы:   [ Проектирование помогает решить задачу ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

В параллелепипеде ABCDA1B1C1D1 на прямых AC и BA1 взяты точки K и M , причём KM || DB1 . Найдите отношение KM:DB1 .
Прислать комментарий     Решение


Задача 111137

Темы:   [ Параллельное проектирование ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

Пусть проекция вершины A параллелепипеда ABCDA1B1C1D1 на некоторую плоскость лежит внутри проекции на эту плоскость треугольника A1BD . Докажите, что площадь проекции параллелепипеда в два раза больше площади проекции треугольника A1BD .
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .