Страница: 1 [Всего задач: 3]
[Теорема Стюарта]
|
|
Сложность: 4 Классы: 8,9
|
Точка D расположена на стороне BC треугольника ABC. Докажите,
что
AB2 . DC + AC2 . BD - AD2 . BC = BC . DC . BD.
|
|
Сложность: 5 Классы: 9,10,11
|
Сторона $AC$ треугольника $ABC$ касается вписанной окружности в точке $K$, а соответствующей вневписанной в точке $L$. Точка $P$ – проекция центра вписанной окружности на серединный перпендикуляр к $AC$. Известно, что касательные в точках $K$ и $L$ к описанной окружности треугольника $BKL$ пересекаются на описанной окружности треугольника $ABC$. Докажите, что прямые $AB$ и $BC$ касаются окружности $PKL$.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В треугольнике ABC M – точка пересечения медиан, I – центр вписанной окружности, A1 и B1 – точки касания этой окружности со сторонами BC и AC, G – точка пересечения прямых AA1 и BB1. Докажите, что угол CGI прямой тогда и только тогда, когда GM || AB.
Страница: 1 [Всего задач: 3]