Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 98]
Внутри правильного n-угольника взята точка, проекции которой на все стороны попадают во внутренние точки сторон. Этими точками стороны разделяются на 2n отрезков. Занумеруем их подряд: 1, 2, 3, ..., 2n. Доказать, что сумма длин отрезков с чётными номерами равна сумме длин отрезков с нечётными номерами.
|
|
Сложность: 4- Классы: 8,9,10
|
На стене висят двое правильно идущих совершенно одинаковых часов. Одни показывают московское время, другие – местное. Минимальное расстояние между концами их часовых стрелок равно m, а максимальное – M. Найдите расстояние между центрами этих часов.
|
|
Сложность: 4- Классы: 8,9,10
|
Хорды AC и BD окружности с центром O пересекаются в точке K. Пусть M и N – центры описанных окружностей треугольников AKB и CKD соответственно. Докажите, что OM = KN.
Дан равнобедренный треугольник ABC с основанием AC. H –
точка пересечения высот. На сторонах AB и BC выбраны точки M и K и соответственно так,
что ∠KMH = 90°. Докажите, что из отрезков AK, CM и MK можно сложить прямоугольный
треугольник.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Четыре перпендикуляра, опущенные из вершин выпуклого пятиугольника на противоположные стороны, пересекаются в одной точке.
Докажите, что пятый такой перпендикуляр тоже проходит через эту точку.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 98]