Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 275]
|
|
Сложность: 3 Классы: 9,10,11
|
При каких натуральных n число n² – 1 является степенью простого числа?
|
|
Сложность: 3 Классы: 10,11
|
Геометрическая прогрессия состоит из 37 натуральных чисел. Первый и последний члены прогрессии взаимно просты.
Докажите, что 19-й член прогрессии является 18-й степенью натурального числа.
|
|
Сложность: 3 Классы: 9,10,11
|
Пусть a, b, c, d, l – целые числа. Докажите, что если дробь
сократима на число k, то ad – bc делится на k.
|
|
Сложность: 3 Классы: 6,7,8
|
Фома и Ерёма нашли на дороге по пачке 11-рублевок. В чайной Фома выпил 3 стакана чая, съел 4 калача и 5 бубликов. Ерёма выпил 9 стаканов чая, съел 1 калач и 4 бублика. Стакан чая, калач и бублик стоят по целому числу рублей. Оказалось, что Фома может расплатиться 11-рублевками без сдачи. Покажите, что это может сделать и Ерёма.
Натуральные числа a, b, c, d таковы, что ab = cd. Докажите, что найдутся такие натуральные u, v, w, z, что a = uv, b = wz, c = uw, d = vz.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 275]