|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Найдётся ли такое десятизначное число, записанное десятью различными цифрами, что после вычеркивания из него любых шести цифр получится составное четырёхзначное число? Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA. |
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 277]
Пусть p – простое число и p > 3.
Пусть p – простое число и p > 5. Докажите,
что если разрешимо сравнение x4 + x3 + x2 + x + 1 ≡ 0 (mod p), то
p ≡ 1 (mod 5).
Пусть
На столе лежат N > 2 кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.
Дано равенство (am1 – 1)...(amn – 1) = (ak1 + 1)...(akl + 1), где a, n, l и все показатели степени – натуральные числа, причём a > 1.
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 277] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|