Страница:
<< 3 4 5 6 7 8
9 >> [Всего задач: 45]
|
|
Сложность: 3+ Классы: 10,11
|
Постройте многочлен R(x) из задачи 61019, если:
а)
P(
x) =
x6 – 6
x4 – 4
x3 + 9
x2 + 12
x + 4;
б)
P(
x) =
x5 +
x4 – 2
x3 – 2
x2 +
x + 1.
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что при любом натуральном n найдётся ненулевой многочлен P(x) с коэффициентами, равными 0, –1, 1, степени не больше 2n, который делится на
(x – 1)n.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Найдите остаток R(x) от деления многочлена xn + x + 2 на x² – 1.
[Алгоритм Евклида для многочленов]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Пусть P(x) и Q(x) – многочлены, причём Q(x) не равен нулю тождественно и P(x) не делится на Q(x). Докажите, что при некотором s ≥ 1 существуют такие многочлены A0(x), A1(x), ..., As(x) и R1(x), ..., Rs(x), что degQ(x) > degR1(x) > degR2(x) > ... > degRs(x) ≥ 0,
P(x) = Q(x)A0(x) + R1(x),
Q(x) = R1(x)A1(x) + R2(x),
R1(x) = R2(x)A2(x) + R3(x),
...
Rs–2(x) = Rs–1(x)As–1(x) + Rs(x),
Rs–1(x) = Rs(x)As(x)
и (P(x), Q(x)) = Rs(x).
|
|
Сложность: 4 Классы: 10,11
|
Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство P(x) > x. Определим последовательность {bn} следующим образом: b1 = 1, bk+1 = P(bk) для k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что P(x) = x + 1.
Страница:
<< 3 4 5 6 7 8
9 >> [Всего задач: 45]