|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны две равные окружности $\omega_1$ и $\omega_2$ с центрами $O_1$ и $O_2$. На отрезке $O_1O_2$ взяты точки $X$ и $Y$ так, что $O_1Y = O_2X$. Точки $A$ и $B$ лежат на $\omega_1$, и прямая $AB$ проходит через $X$. Точки $C$ и $D$ лежат на $\omega_2$, и прямая $CD$ проходит через $Y$. Докажите, что существует окружность, касающаяся прямых $AO_1$, $BO_1$, $CO_2$ и $DO_2$. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 45]
Известно, что a5 – a3 + a = 2. Докажите, что a6 > 3.
Докажите, что остаток от деления многочлена P(x) на x – c равен P(c).
При каких A и B многочлен Axn+1 + Bxn + 1 имеет число x = 1 не менее чем двукратным корнем?
В лес за грибами пошли 11 девочек и n мальчиков. Вместе они собрали n² + 9n – 2 гриба, причём все они собрали поровну грибов.
Пусть P(x) и Q(x) – многочлены,
причём Q(x) не равен нулю тождественно. Докажите, что существуют
такие многочлены T(x) и R(x), что
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 45] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|