ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 512]      



Задача 115311

Темы:   [ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

AL – биссектриса треугольника ABC, причём  AL = LB.  На луче AL отложен отрезок AK, равный CL. Докажите, что  AK = CK.

Прислать комментарий     Решение

Задача 115312

Темы:   [ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

В треугольнике ABC угол A в 2 раза больше угла B, AL – биссектриса треугольника. На луче AL отложен отрезок AK, равный CL.
Докажите, что  AK = CK.

Прислать комментарий     Решение

Задача 115599

Темы:   [ Вспомогательные подобные треугольники ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9

С центром в точке B проведена окружность, касающаяся стороны AC треугольника ABC. Из вершин A и C проведены к этой окружности касательные AM и CP, отличные от AC (M и P – точки касания). Прямая MP пересекает прямую AB в точке E, а прямую BC в точке H. Докажите, что AH и CE – высоты треугольника ABC.

Прислать комментарий     Решение

Задача 115618

Темы:   [ Вспомогательные подобные треугольники ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4
Классы: 8,9

Прямая, параллельная медиане CM треугольника ABC, пересекается с прямыми AB, BC и AC в точках C', A' и B' соответственно.
Докажите, что треугольники AA'C' и BB'C' равновелики.

Прислать комментарий     Решение

Задача 115655

Темы:   [ Вспомогательные подобные треугольники ]
[ Перегруппировка площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Подобные фигуры ]
[ Трапеции (прочее) ]
Сложность: 4
Классы: 8,9

Дана трапеция ABCD с основаниями  AD = a  и  BC = b.  Точки M и N лежат на сторонах AB и CD соответственно, причём отрезок MN параллелен основаниям трапеции. Диагональ AC пересекает этот отрезок в точке O. Найдите MN, если известно, что площади треугольников AMO и CNO равны.

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .