ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 512]      



Задача 115657

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема косинусов ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 4-
Классы: 8,9

В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.

Прислать комментарий     Решение

Задача 35216

Темы:   [ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 8,9,10

В окружность вписан выпуклый шестиугольник ABCDEF.
  а) Известно, что диагонали AD, BE, CF пересекаются в одной точке. Докажите, что  AB·CD·EF = BC·DE·FA.
  б) Известно, что  AB·CD·EF = BC·DE·FA.  Докажите, что диагонали AD, BE, CF пересекаются в одной точке.

Прислать комментарий     Решение

Задача 53896

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Центр масс ]
Сложность: 4
Классы: 8,9

Через точку пересечения биссектрисы угла A треугольника ABC и отрезка, соединяющего основания двух других биссектрис, проведена прямая, параллельная стороне BC. Докажите, что меньшее основание образовавшейся трапеции равно полусумме её боковых сторон.

Прислать комментарий     Решение

Задача 64813

Темы:   [ Вспомогательные подобные треугольники ]
[ Точка Лемуана ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 4
Классы: 9,10,11

Даны окружность, её хорда AB и середина W меньшей дуги AB. На большей дуге AB выбирается произвольная точка C. Касательная к окружности, проведённая из точки C, пересекает касательные, проведённые из точек A и B, в точках X и Y соответственно. Прямые WX и WY пересекают прямую AB в точках N и M соответственно. Докажите, что длина отрезка NM не зависит от выбора точки C.

Прислать комментарий     Решение

Задача 67216

Темы:   [ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4
Классы: 8,9,10,11

Автор: Курский М.

Пусть $H$ – ортоцентр остроугольного треугольника $ABC$; $E$, $F$ – такие точки на сторонах $AB$, $AC$ соответственно, что $AEHF$ – параллелограмм; $X$, $Y$ – точки пересечения прямой $EF$ с описанной окружностью $\omega$ треугольника $ABC$; $Z$ – точка $\omega$, диаметрально противоположная $A$. Докажите, что $H$ – ортоцентр треугольника $XYZ$.
Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .