Страница:
<< 45 46 47 48
49 50 51 >> [Всего задач: 519]
Окружность касается сторон угла ABC в точках A и C. Прямая BN пересекает эту окружность в точках M и N, а отрезок AC – в точке K, BM : MN = 3 : 5.
Найдите MK : KN.
На стороне BC остроугольного треугольника ABC (AB ≠ AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD = a, MD = b, H – точка пересечения высот треугольника ABC. Найдите AH.
Взаимно перпендикулярные диаметр KM и хорда AB некоторой окружности пересекаются в точке N, KN ≠ NM. На продолжении отрезка AB за точку A взята точка L, LN = a, AN = b. Найдите расстояние от точки N до точки пересечения высот треугольника KLM.
Через вершины A и B треугольника ABC проведена окружность, касающаяся прямой BC, а через вершины B и C – другая окружность, касающаяся прямой AB. Продолжение общей хорды BD этих окружностей пересекает сторону AC в точке E, а продолжение хорды AD одной окружности пересекает другую окружность в точке F.
а) Найдите отношение AE : EC, если AB = 5 и BC = 9.
б) Сравните площади треугольников ABC и ABF.
Дана трапеция ABCD, M – точка пересечения её диагоналей. Известно, что боковая сторона AB перпендикулярна основаниям AD и BC и что в трапецию можно вписать окружность. Найдите площадь треугольника DCM, если радиус этой окружности равен r.
Страница:
<< 45 46 47 48
49 50 51 >> [Всего задач: 519]