Страница:
<< 67 68 69 70
71 72 73 >> [Всего задач: 512]
|
|
Сложность: 3 Классы: 8,9,10
|
Дан угол с вершиной O и окружность, касающаяся его сторон в точках
A и B. Луч с началом в точке A, параллельный OB, пересекает окружность в точке C. Отрезок OC пересекает окружность в точке E. Прямые AE и OB пересекаются в точке K.
Докажите, что OK = KB.
|
|
Сложность: 3 Классы: 8,9,10
|
Существует ли прямоугольный треугольник, в котором две медианы перпендикулярны?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Внутри прямого угла с вершиной $O$ расположен треугольник $OAB$ с прямым углом $A$. Высота треугольника $OAB$, опущенная на гипотенузу, продолжена
за точку $A$ до пересечения со стороной угла $O$ в точке $M$. Расстояния от точек $M$ и $B$ до второй стороны угла $O$ равны $2$ и $1$ соответственно. Найдите $OA$.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Рассмотрим две окружности $\Omega$ и $\omega$, касающиеся друг друга внутренним образом в точке $A$. Пусть хорда $BC$ окружности $\Omega$ касается окружности $\omega$ в точке $K$. Пусть также $O$ – центр $\omega$. Тогда окружность $BOC$ делит отрезок $AK$ пополам.
|
|
Сложность: 3+ Классы: 7,8,9
|
Дан прямоугольник 100×101, разбитый линиями сетки на единичные квадратики. Найдите число отрезков, на которое линии сетки разбивают его диагональ.
Страница:
<< 67 68 69 70
71 72 73 >> [Всего задач: 512]