ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 512]      



Задача 53122

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Свойства биссектрис, конкуррентность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Докажите, что квадрат биссектрисы треугольника равен произведению сторон, её заключающих, без произведения отрезков третьей стороны, на которые она разделена биссектрисой.

Прислать комментарий     Решение

Задача 57200

Темы:   [ Метод ГМТ ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9

Дан четырёхугольник ABCD. Впишите в него параллелограмм с заданными направлениями сторон.

Прислать комментарий     Решение

Задача 64856

Темы:   [ Шестиугольники ]
[ Векторы помогают решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 9,10,11

На столе лежал проволочный треугольник с углами x°, y°, z°. Хулиган Коля согнул каждую сторону треугольника на один градус, в результате чего получился невыпуклый шестиугольник c внутренними углами  (x – 1)°,  181°,  (y – 1)°,  181°, (z – 1)°,  181°.  Докажите, что точки сгиба делили стороны исходного треугольника в одном и том же отношении.

Прислать комментарий     Решение

Задача 65808

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 9,10

Вписанная окружность ω треугольника ABC касается сторон BC, AC и AB в точках A0, B0 и C0 соответственно. Биссектрисы углов B и C пересекают серединный перпендикуляр к отрезку AA0 в точках Q и P соответственно. Докажите, что прямые PC0 и QB0 пересекаются на окружности ω.

Прислать комментарий     Решение

Задача 65879

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Птолемея ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.

Прислать комментарий     Решение

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .