Страница:
<< 81 82 83 84
85 86 87 >> [Всего задач: 512]
|
|
Сложность: 4- Классы: 8,9,10,11
|
В трапеции ABCD с основаниями AD и BC P и Q – середины диагоналей AC и BD соответственно.
Докажите, что если ∠DAQ = ∠CAB, то ∠PBA = ∠DBC.
Точки A, B и C лежат на одной прямой. Отрезок AB
является диаметром первой окружности, а отрезок BC – диаметром второй окружности. Прямая, проходящая через точку A, пересекает первую окружность в точке D и касается второй окружности в точке E, BD = 9, BE = 12. Найдите радиусы окружностей.
Точки K, L и M лежат на одной прямой. Отрезок KL
является диаметром первой окружности, а отрезок LM – диаметром второй окружности. Прямая, проходящая через точку K, пересекает первую окружность в точке N и касается второй окружности в точке S, LN = 8, NS = 4. Найдите радиусы окружностей.
|
|
Сложность: 4- Классы: 10,11
|
H – точка пересечения высот AA' и BB' остроугольного треугольника ABC. Прямая, перпендикулярная AB, пересекает эти высоты в точках D и E, а сторону AB – в точке P. Докажите, что ортоцентр треугольника DEH лежит на отрезке CP.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Треугольник $ABC$ вписан в окружность $\omega_1$ с центром $O$. Окружность $\omega_2$ касается сторон $AB$, $AC$ и касается дуги $BC$ описанной окружности в точке $K$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что прямая $OI$ содержит симедиану треугольника $AIK$.
Страница:
<< 81 82 83 84
85 86 87 >> [Всего задач: 512]