ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 512]      



Задача 115777

Темы:   [ Трапеции (прочее) ]
[ Теорема синусов ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9,10,11

В трапеции ABCD с основаниями AD и BC  P и Q – середины диагоналей AC и BD соответственно.
Докажите, что если ∠DAQ = ∠CAB, то ∠PBA = ∠DBC.

Прислать комментарий     Решение

Задача 116306

Темы:   [ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Точки A, B и C лежат на одной прямой. Отрезок AB является диаметром первой окружности, а отрезок BC – диаметром второй окружности. Прямая, проходящая через точку A, пересекает первую окружность в точке D и касается второй окружности в точке E,  BD = 9,  BE = 12.  Найдите радиусы окружностей.

Прислать комментарий     Решение

Задача 116307

Темы:   [ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Точки K, L и M лежат на одной прямой. Отрезок KL является диаметром первой окружности, а отрезок LM – диаметром второй окружности. Прямая, проходящая через точку K, пересекает первую окружность в точке N и касается второй окружности в точке S,  LN = 8,  NS = 4.  Найдите радиусы окружностей.

Прислать комментарий     Решение

Задача 116751

Темы:   [ Ортоцентр и ортотреугольник ]
[ Подобие ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 10,11

H – точка пересечения высот AA' и BB' остроугольного треугольника ABC. Прямая, перпендикулярная AB, пересекает эти высоты в точках D и E, а сторону AB – в точке P. Докажите, что ортоцентр треугольника DEH лежит на отрезке CP.

Прислать комментарий     Решение

Задача 67095

Темы:   [ Касающиеся окружности ]
[ Окружность, вписанная в угол ]
[ Вспомогательные подобные треугольники ]
[ Изогональное сопряжение ]
Сложность: 4
Классы: 8,9,10,11

Автор: Фадин М.

Треугольник $ABC$ вписан в окружность $\omega_1$ с центром $O$. Окружность $\omega_2$ касается сторон $AB$, $AC$ и касается дуги $BC$ описанной окружности в точке $K$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что прямая $OI$ содержит симедиану треугольника $AIK$.
Прислать комментарий     Решение


Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .