Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

В примере на сложение двух чисел первое слагаемое меньше суммы на 2000, а сумма больше второго слагаемого на 6.
Восстановите пример.

Вниз   Решение


Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7?

ВверхВниз   Решение


Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.)

ВверхВниз   Решение


В неравнобедреном треугольнике ABC точка I – центр вписанной окружности, I' – центр окружности, касающейся стороны AB и продолжений сторон CB и CA; L и L' – точки, в которых сторона AB касается этих окружностей.
Докажите, что прямые IL', I'L и высота CH треугольника ABC пересекаются в одной точке.

ВверхВниз   Решение


Докажите, что не существует многочлена степени не ниже двух с целыми неотрицательными коэффициентами, значение которого при любом простом p является простым числом.

ВверхВниз   Решение


Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?

Вверх   Решение

Задача 109706
Темы:    [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо один, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре?

Решение

Мысленно разобьем контакты на четыре одинаковых группы: A , B , C и D . В каждой группе пронумеруем контакты числами от 1 до 500.
Петя будет отвечать на любой ход Васи так, чтобы для каждого номера k от контактов Ak , Bk , Ck и Dk отходило поровну проводов. До начала игры это условие, очевидно, выполняется.
Именно благодаря этому условию проигрышная ситуация впервые случится после Васиного хода.

Опишем подробно Петину стратегию. Если Вася перерезает провод между контактами одной группы, например, провод AiAj , то Петя перережет провода BjBj , CiCj и DjDj .
Если Вася перерезает провод между проводами из разных групп и с разными номерами, например, провод AiBj , то Петя в ответ перережет провода AjBi , CiDj и CjDi . Если же Вася перерезал провод между контактами из разных групп с одинаковыми номерами, например, провод AkBk , то Петя перережет провод CkDk . Заметим, что из описанной стратегии Пети следует, что провода, которые он собирается резать, не будут отрезаны до его хода. Поэтому Петя всегда сможет разрезать требуемые провода.

Отметим, что каждый раз после хода Пети от контактов Ak , Bk , Ck и Dk отходит поровну проводов; при этом от одного из них столько же проводов отходило уже после Васиного хода. Поэтому ситуация, когда от одного контакта отрезан последний провод, случится впервые после Васиного хода. Так как количество проводов конечно, проиграет Вася.

См. также данную задачу.

Ответ

Выигрывает Петя.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1999
Этап
Вариант 5
Класс
Класс 9
задача
Номер 99.5.9.8

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .