Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

В прямоугольном треугольнике ABC гипотенуза AB=c , A = α . Найдите радиус окружности, касающейся катета AC , гипотенузы AB и окружности, описанной около треугольника ABC .

Вниз   Решение


Три шара радиусов 1, 3 и 4 расположены так, что каждый из них касается двух других шаров и двух данных плоскостей. Найдите расстояние между точками касания первого из этих шаров с плоскостями.

ВверхВниз   Решение


Основания трапеции равны 2 и 12, а диагонали – 6 и 10. Найдите угол между диагоналями.

ВверхВниз   Решение


Прямая OA касается окружности в точке A, а хорда BC параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L.
Докажите, что прямая KL делит отрезок OA пополам.

ВверхВниз   Решение


Плоскость, параллельная основанию пирамиды, делит её объём на две равные части. В каком отношении эта плоскость делит боковые рёбра пирамиды?

ВверхВниз   Решение


Автор: Фольклор

Выдающемуся бразильскому футболисту Роналдиньо Гаушо исполнится X лет в X² году.
А сколько лет ему исполнится в 2018 году, когда чемпионат мира пройдёт в России?

ВверхВниз   Решение


Объём тетраэдра ABCD равен V . На ребре AB взяты точки M и N , а на ребре CD – точки P и Q . Известно, что MN = α AB , PQ = β CD . Найдите объём тетраэдра MNPQ .

ВверхВниз   Решение


Автор: Фольклор

Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?

ВверхВниз   Решение


На ребре единичного правильного тетраэдра взята точка, которая делит это ребро в отношении 1:2. Через эту точку провежены две плоскости, параллельные двум граням тетраэдра. Эти плоскости отсекают от тетраэдра две треугольные пирамиды. Найдите объём оставшейся части тетраэдра.

ВверхВниз   Решение


Объём пирамиды ABCD равен 1. На рёбрах AD , BD , CD взяты соответственно точки K , L и M , причём 2AK = KD , BL = 2LD и 2CM = 3MD . Найдите объём многогранника ABCKLM .

Вверх   Решение

Задача 78625
Темы:    [ Метрические соотношения (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 10,11
В корзину
Прислать комментарий

Условие

На каждой стороне треугольника ABC построено по квадрату во внешнюю сторону (пифагоровы штаны). Оказалось, что внешние вершины всех квадратов лежат на одной окружности. Доказать, что треугольник ABC — равнобедренный.

Решение

Предположим, что на сторонах треугольника ABC внешним образом построены квадраты ABB1A1, BCC2B2, ACC3A3 и вершины A1, B1, B2, C2, C3, A3 лежат на одной окружности S. Серединные перпендикуляры к отрезкам A1B1, B2C2, A3C3 проходят через центр окружности S. Ясно, что серединные перпендикуляры к отрезкам A1B1, B2C2, A3C3 совпадают с серединными перпендикулярами к сторонам треугольника ABC, поэтому центр окружности S совпадает с центром описанной окружности треугольника. Обозначим центр описанной окружности треугольника ABC через O. Расстояние от точки O до прямой B2C2 равно  R cos A + 2R sin A, где R — радиус описанной окружности треугольника ABC. Поэтому   OB22 = (R sin A)2 + (R cos A+2R sin A)2 = R2(3 + 2(sin 2A - cos 2A)) = R2(3 - 2$ \sqrt{2}$cos(45o + 2A)). Ясно, что для того, чтобы треугольник обладал требуемым свойством, необходимо и достаточно, чтобы  OB22 = OC32 = OA12, т. е.   cos(45o + 2$ \angle$A) = cos(45o + 2$ \angle$B) = cos(45o+2$ \angle$C). Это равенство выполняется при $ \angle$A = $ \angle$B = $ \angle$C = 60o. Если же $ \angle$A$ \ne$$ \angle$B, то (45o + 2$ \angle$A) + (45o + 2$ \angle$B) = 360o, т. е. $ \angle$A + $ \angle$B = 135o. Тогда $ \angle$C = 45o и $ \angle$A = $ \angle$C = 45o, $ \angle$B = 90o (или $ \angle$B = 45o,$ \angle$A = 90o). Мы видим, что треугольник должен быть либо равносторонним, либо равнобедренным прямоугольным.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 30
Год 1967
вариант
1
Класс 9
Тур 2
задача
Номер 3
олимпиада
Название Московская математическая олимпиада
год
Номер 30
Год 1967
вариант
1
Класс 10
Тур 2
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .