Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

Клетчатая фигура Ф обладает таким свойством: при любом заполнении клеток прямоугольника m×n числами, сумма которых положительна, фигуру Ф можно так расположить в прямоугольнике, чтобы сумма чисел в клетках прямоугольника, накрытых фигурой Ф, была положительна (фигуру Ф можно поворачивать). Докажите, что данный прямоугольник может быть покрыт фигурой Ф в несколько слоев.

Вниз   Решение


Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?

ВверхВниз   Решение


Али-Баба стоит с большим мешком монет в углу пустой прямоугольной пещеры размером m×n клеток, раскрашенных в шахматном порядке. Из любой клетки он может сделать шаг в любую из четырёх соседних клеток (вверх, вниз, вправо или влево). При этом он должен либо положить одну монету в этой клетке, либо забрать из неё одну монету, если, конечно, она не пуста. Может ли после прогулки Али-Бабы по пещере оказаться, что на чёрных клетках лежит ровно по одной монете, а на белых монет нет?

ВверхВниз   Решение


В квадрате 6×6 отмечают несколько клеток так, что из любой отмеченной можно пройти в любую другую отмеченную, переходя только через общие стороны отмеченных клеток. Отмеченную клетку называют концевой, если она граничит по стороне ровно с одной отмеченной. Отметьте несколько клеток так, чтобы получилось   а) 10,  б) 11,  в) 12 концевых клеток.

ВверхВниз   Решение


На отрезке  [0, 1]  отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны.

ВверхВниз   Решение


Точка O лежит внутри ромба ABCD . Угол DAB равен 110o . Углы AOD и BOC равны 80o и 100o соответственно. Чему может быть равен угол AOB ?

ВверхВниз   Решение


Автор: Шень А.Х.

В стене имеется маленькая дырка (точка). У хозяина есть флажок следующей формы (см. рисунок).

Покажите на рисунке все точки, в которые можно вбить гвоздь, так чтобы флажок закрывал дырку.

ВверхВниз   Решение


Гулливер попал в страну лилипутов, имея 7000000 рублей. На все деньги он сразу купил кефир в бутылках по цене 7 рублей за бутылку (пустая бутылка стоила в то время 1 рубль). Выпив весь кефир, он сдал бутылки и на все вырученные деньги сразу купил кефир. При этом он заметил, что и стоимость кефира, и стоимость пустой бутылки выросли в два раза. Затем он снова выпил весь кефир, сдал бутылки, на все вырученные деньги снова купил кефир и т. д. При этом между каждыми двумя посещениями магазина и стоимость кефира, и стоимость пустой бутылки возрастали в два раза. Сколько бутылок кефира выпил Гулливер?

ВверхВниз   Решение


Автор: Храбров А.

Выпуклый многоугольник M переходит в себя при повороте на угол 90o . Докажите, что найдутся два круга с отношением радиусов, равным , один из которых содержит M , а другой содержится в M .

ВверхВниз   Решение


Красный квадрат покрывают 100 белых квадратов. При этом все квадраты одинаковы и стороны каждого белого квадрата параллельны сторонам красного. Всегда ли можно удалить один из белых квадратов так, что оставшиеся белые квадраты все еще будут покрывать целиком красный квадрат?

Комментарий. Во фразе "все квадраты одинаковы" имеется в виду, что все белые квадраты имеют тот же размер, что и красный.

Вверх   Решение

Задача 34834
Темы:    [ Принцип Дирихле (углы и длины) ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?

Подсказка

Если отрезки, освещенные n-м и (n+2)-м фонарями, пересекаются, то (n+1)-й фонарь можно выключить.

Решение

Занумеруем фонари натуральными числами в порядке следования вдоль дороги. Если отрезки, освещенные n-м и (n+2)-м фонарями, пересекаются, то (n+1)-й фонарь можно выключить. Следовательно, отрезки с различными нечетными номерами, не пересекаются. На отрезке длины 1000 м нельзя расположить больше 999 непересекающихся отрезков длины 1 м. Значит, фонарей не больше 1998. Расположим 1998 фонарей так, чтобы центры освещенных отрезков образовывали арифметическую прогрессию, первый член которой равен 0,5 м, а 1998-й равен 999,5 м. Между n-м и (n+2)-м отрезком остается зазор в 1/1997 м. Его освещает только (n+1)-й фонарь. Поэтому никакой фонарь нельзя выключить.

Ответ

1998.00

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .