ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Проведена окружность S с центром в вершине C равнобедренного треугольника ABC ( AC=BC ). Радиус окружности меньше AC . Найдите на этой окружности такую точку P , чтобы касательная к окружности, проведённая в этой точке, делила пополам угол APB . В треугольник ABC со сторонами AB = 6, BC = 5, AC = 7 вписан квадрат, две вершины которого лежат на стороне AC, одна на стороне AB и одна на стороне BC. Через середину D стороны AC и центр квадрата проведена прямая, которая пересекается с высотой BH в точке M. Найдите площадь треугольника DMC.
В трапеции ABCD с меньшим основанием BC и
площадью, равной 4, прямые BC и AD касаются
окружности диаметром 2 в точках B и D
соответственно. Боковые стороны трапеции AB и
CD пересекают окружность в точках M и N
соответственно. Длина MN равна
Пятиугольник ABCDE вписан в окружность. Найдите её длину, если
BC = CE, площадь треугольника ADE равна площади треугольника CDE,
площадь треугольника ABC равна площади треугольника BCD, а
3AC + 2BD = 5 В описанном пятиугольнике ABCDE диагонали AD и CE пересекаются в центре O вписанной окружности.
В трапеции ABCD с большим основанием BC и
площадью, равной 4 Докажите, что площадь правильного двенадцатиугольника, вписанного в окружность радиуса 1, равна 3. В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой. Куб размером 3×3×3 состоит из 27 единичных кубиков. Можно ли побывать в каждом кубике по одному разу, двигаясь следующим образом: из кубика можно пройти в любой кубик, имеющий с ним общую грань, причём запрещено ходить два раза подряд в одном направлении? На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что BP = CQ.
В равнобедренном треугольнике ABC (AB = BC) медианы AM и CN пересекаются в точке D под прямым углом. Найдите все углы треугольника ABC и площадь четырёхугольника NBMD, если основание AC = 1.
В параллелепипеде ABCDA1B1C1D1 грань ABCD – квадрат со стороной 5, ребро AA1 также равно 5, и это ребро образует с рёбрами AB и AD углы 60o . Найдите диагональ BD1 . В выпуклом пятиугольнике ABCDE диагонали BE и CE являются биссектрисами углов при вершинах B и C соответственно, ∠A = 35°, ∠D = 145°, а площадь треугольника BCE равна 11. Найдите площадь пятиугольника ABCDE. |
Задача 102459
УсловиеВ выпуклом пятиугольнике ABCDE диагонали BE и CE являются биссектрисами углов при вершинах B и C соответственно, ∠A = 35°, ∠D = 145°, а площадь треугольника BCE равна 11. Найдите площадь пятиугольника ABCDE. Решение Заметим, что углы BCE и CBE – острые (как половины внутренних углов выпуклого многоугольника). Поскольку углы при общей вершине C треугольников CDE и CBE равны, а
∠CDE > ∠CBE (один – тупой, второй – острый), то ∠CED < ∠CEB. Поэтому если от луча EC в полуплоскость, содержащую точку B, отложить луч под углом, равным углу CED, то отложенный луч будет лежать между сторонами угла CEB, а значит, будет пересекать отрезок BC в некоторой точке
M. Ответ22. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке