Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Можно ли, применяя к числу 2 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в любом количестве и в любом порядке, получить число 2010?

Вниз   Решение


Пусть  P(x) = (2x² – 2x + 1)17(3x² – 3x + 1)17.  Найдите
  a) сумму коэффициентов этого многочлена;
  б) суммы коэффициентов при чётных и нечётных степенях x.

ВверхВниз   Решение


Автор: Орлов О.

На плоскости проведено несколько прямых, никакие две из которых не параллельны и никакие три не проходят через одну точку. Докажите, что в областях, на которые прямые поделили плоскость, можно расставить положительные числа так, чтобы суммы чисел по обе стороны каждой из проведённых прямых были равны.

ВверхВниз   Решение


Рассмотрим все натуральные числа, в десятичной записи которых участвуют лишь цифры 1 и 0. Разбейте эти числа на два непересекающихся подмножества так, чтобы сумма любых двух различных чисел из одного и того же подмножества содержала в своей десятичной записи не менее двух единиц.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы.

ВверхВниз   Решение


Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

ВверхВниз   Решение


По кругу расставлено девять чисел – четыре единицы и пять нулей. Каждую секунду над числами проделывают следующую операцию: между соседними числами ставят ноль, если они различны, и единицу, если они равны; после этого старые числа стирают.
Могут ли через некоторое время все числа стать одинаковыми?

ВверхВниз   Решение


Автор: Козлов П.

Число N, не делящееся на 81, представимо в виде суммы квадратов трёх целых чисел, делящихся на 3.
Докажите, что оно также представимо в виде суммы квадратов трёх целых чисел, не делящихся на 3.

ВверхВниз   Решение


Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади.

ВверхВниз   Решение


В каждой клетке секретной таблицы n×n записана одна из цифр от 1 до 9. Из них получаются n-значные числа, записанные в строках слева направо и в столбцах сверху вниз. Петя хочет написать такое n-значное число без нулей в записи, чтобы ни это число, ни оно же, записанное задом наперед, не совпадало ни с одним из 2n чисел в строках и столбцах таблицы. В каком наименьшем количестве клеток Петя должен для этого узнать цифры?

ВверхВниз   Решение


Отличник Поликарп составил огромное число, выписав натуральные числа от 1 до 500: 123…1011…499500. Двоечник Колька стер у этого числа первые 500 цифр. Как Вы думаете, с какой цифры начинается оставшееся число?

ВверхВниз   Решение


Восстановите пример на умножение

Вверх   Решение

Задача 102863
Темы:    [ Ребусы ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Восстановите пример на умножение


Решение

Пусть  ШЕСТЬ = х,  тогда  ШЕСТЬ² − ШЕСТЬ = х(х − 1).  Но разность  ШЕСТЬ² − ШЕСТЬ  оканчивается пятью нулями. Так как х и  х − 1  – соседние числа, то одно из них делится на 32, а другое нечётно и делится на 3125  (100000 = 32·3125).  Заметим, что вторая цифра числа (Е) равна нулю (смотрите схему умножения). Пятизначные числа, кратные 3125 и удовлетворяющие условию  Е = 0,  – это 40625 и 90625. Соседние с ними числа – это 40624 и 40626, 90624 и 90626. На 32 делится только 90624. Значит искомое число – 90624 или 90625. Первое не подходит, так как 4² не оканчивается на 4.


Ответ

ШЕСТЬ = 90625.

Источники и прецеденты использования

кружок
Место проведения МЦНМО
класс
Класс 7
год
Год 2004/2005
занятие
Номер 26
задача
Номер 26.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .