Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 16 задач
Версия для печати
Убрать все задачи

Окружность с центром на стороне AC равнобедренного треугольника ABC  (AB = BC)  касается сторон AB и BC.
Найдите радиус окружности, если площадь треугольника ABC равна 25, а отношение высоты BD к стороне AC равно  3 : 8.

Вниз   Решение


Докажите, что если ортогональная проекция одной из вершин треугольной пирамиды на плоскость противоположной грани совпадает с точкой пересечения высот этой грани, то это же будет верно для любой другой вершины пирамиды.

ВверхВниз   Решение


Площадь прямоугольного треугольника равна r2 , где r – радиус окружности, касающейся одного катета и продолжений другого катета и гипотенузы. Найдите стороны треугольника.

ВверхВниз   Решение


Квадратная доска разделена на n² прямоугольных клеток  n – 1  горизонтальными и  n – 1  вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все n клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.

ВверхВниз   Решение


Окружность ω с центром O вписана в угол BAC и касается его сторон в точках B и C. Внутри угла BAC выбрана точка Q. На отрезке AQ нашлась такая точка P, что  AQOP.  Прямая OP пересекает описанные окружности ω1 и ω2 треугольников BPQ и CPQ, вторично в точках M и N. Докажите, что  OM = ON.

ВверхВниз   Решение


Прямая l проходит через точку, лежащую на окружности с центром O и радиусом r . Известно, что ортогональной проекцией прямой l на плоскость окружности является прямая, касающаяся этой окружности. Найдите расстояние от точки O до прямой l .

ВверхВниз   Решение


Решите задачу 3 для надписи A, BC, DEF, CGH, CBE, EKG.

ВверхВниз   Решение


Отрезки AM и BH – соответственно медиана и высота остроугольного треугольника ABC. Известно, что  AH = 1  и  2∠MAC = ∠MCA.  Найдите сторону BC.

ВверхВниз   Решение


Точка Х расположена на диаметре АВ окружности радиуса R. Точки K и N лежат на окружности в одной полуплоскости относительно АВ,
а  ∠KXA = ∠NXB = 60°.  Найдите длину отрезка KN.

ВверхВниз   Решение


Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB,  2AB = BS  и точка B лежит между A и S. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

ВверхВниз   Решение


Две окружности O и O1 пересекаются в точке A . Провести через точку A такую прямую, чтобы отрезок BC , высекаемый на ней окружностями O и O1 , был равен данному.

ВверхВниз   Решение


Автор: Фольклор

Найдите наибольшее значение выражения  х + у,  если     x ∈ [0, /2],   y ∈ [π, 2π].

ВверхВниз   Решение


В треугольнике ABC взяты точка N на стороне AB, а точка M – на стороне AC. Отрезки CN и BM пересекаются в точке O,  AN : NB = 2 : 3,  BO : OM = 5 : 2.
Найдите  CO : ON.

ВверхВниз   Решение


Подобные прямоугольные треугольники ABC и A'B'A с прямыми углами при вершинах B и B' расположены на плоскости так, что точка A' лежит на луче BC за точкой C . Докажите, что центр окружности, описанной около треугольника A'AC , лежит на прямой A'B' .

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон BC, AC, AB в точках A1, B1, C1 соответственно. Отрезок AA1 вторично пересекает вписанную окружность в точке Q. Прямая l параллельна BC и проходит через A. Прямые A1C1 и A1B1 пересекают l в точках P и R соответственно. Докажите, что  ∠PQR = ∠B1QC1.

ВверхВниз   Решение


Решите систему уравнений:
    x² + 4sin²y – 4 = 0,
    cos x – 2cos²y – 1 = 0.

Вверх   Решение

Задача 104102
Темы:    [ Монотонность и ограниченность ]
[ Тригонометрические уравнения ]
[ Смешанные уравнения и системы уравнений ]
Сложность: 3
Классы: 9,10
Из корзины
Прислать комментарий

Условие

Решите систему уравнений:
    x² + 4sin²y – 4 = 0,
    cos x – 2cos²y – 1 = 0.


Решение

2cos²y = cos x – 1 ≤ 0,  откуда  cos²y = 0,  sin²y = 1.  Теперь из первого уравнения получаем  x = 0.


Ответ

x = 0,  y = π/2 + kπ.

Источники и прецеденты использования

олимпиада
Название Окружная олимпиада (Москва)
год
Дата 2006
класс
Класс 11
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .