Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах клеток. Докажите, что если треугольник ABC остроугольный, то внутри или на сторонах его есть по крайней мере еще одна вершина клетки.

Вниз   Решение


На сторонах произвольного выпуклого четырёхугольника внешним образом построены квадраты. Докажите, что отрезки, соединяющие центры противоположных квадратов, равны и перпендикулярны.

ВверхВниз   Решение


Постройте образ точки A при инверсии относительно окружности S с центром O.

ВверхВниз   Решение


Стороны выпуклого пятиугольника ABCDE продолжили так, что образовалась пятиконечная звезда AHBKCLDMEN (рис.). Около треугольников — лучей звезды описали окружности. Докажите, что пять точек пересечения этих окружностей, отличных от A, B, C, D, E, лежат на одной окружности.


ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Докажите, что площадь любого выпуклого четырехугольника не превосходит полусуммы произведений противоположных сторон.

ВверхВниз   Решение


а) Даны прямые a, b, c, d, проходящие через одну точку, и прямая l, через эту точку не проходящая. Пусть A, B, C, D — точки пересечения прямой l с прямыми a, b, c, d соответственно. Докажите, что (abcd )= (ABCD).
б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях.

ВверхВниз   Решение


Решая задачу:   "Какое значение принимает выражение  x2000 + x1999 + x1998 + 1000x1000 + 1000x999 + 1000x998 + 2000x³ + 2000x² + 2000x + 3000
(x – действительное число), если  x² + x + 1 = 0?",  Вася получил ответ 3000. Прав ли Вася?

ВверхВниз   Решение


Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины A с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.

Вверх   Решение

Задача 105177
Темы:    [ Свойства симметрий и осей симметрии ]
[ Разбиения на пары и группы; биекции ]
[ Инварианты ]
[ Произвольные многоугольники ]
Сложность: 4
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины A с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.


Решение

  Если шар вылетит из A по стороне, он свалится в ближайшую лузу. Пусть шар вылетел под острым углом к стороне AB. Легко убедиться, что при отражении как от параллельной, так и от перпендикулярной к прямой AB стороны наименьший угол между AB и звеном траектории не меняется (см. рис.). Через точку A проходит две прямые под таким углом к AB, но только вдоль одной из них шар, вылетев из A, внутрь стола. Поэтому вернуться в A шар может только пройдя по стартовому звену в обратном направлении.

  Предположим, что это произошло. Мысленно проведём шар по тому же пути в обратном направлении. Этот путь, очевидно, также удовлетворяет законам отражения. Но путь шара полностью определяется начальным направлением. Следовательно "прямой" и "обратный" пути совпадают. Это значит, что в середине пути шар поменял направление движения на противоположное (то есть отскочил от стены под прямым углом). Но таких отскоков нет. Противоречие.

Замечания

1. 6 баллов.

2. Ср. с задачей 65409.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 67
Год 2004
вариант
Класс 9
задача
Номер 3
олимпиада
Название Турнир городов
Турнир
Номер 25
Дата 2003/2004
вариант
Вариант весенний тур, основной вариант, 8-9 класс
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .