ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи К двум окружностям w1 и w2, пересекающимся в точках A и B, проведена их общая касательная CD (C и D – точки касания соответственно, точка B ближе к прямой CD, чем A). Прямая, проходящая через A, вторично пересекает w1 и w2 в точках и L соответственно (A лежит между K и L ). Прямые KC и LD пересекаются в точке P. Докажите, что PB – симедиана треугольника KPL (прямая, симметричная медиане относительно биссектрисы). Можно ли найти десять таких последовательных натуральных чисел, что сумма их квадратов равна сумме квадратов следующих за ними девяти последовательных натуральных чисел? Квадратную салфетку сложили пополам, полученный прямоугольник сложили пополам ещё раз (см. рисунок). Получившийся квадратик разрезали ножницами (по прямой). Могла ли салфетка распасться а) на 2 части? б) на 3 части? в) на 4 части? г) на 5 частей? Если да — нарисуйте такой разрез, если нет — напишите слово '' нельзя''.
Две вершины квадрата расположены на гипотенузе равнобедренного прямоугольного треугольника, а две другие – на катетах. О функции f(x) , заданной на всей действительной прямой, известно, что при любом a>1 функция f(x)+f(ax) непрерывна на всей прямой. Докажите, что f(x) также непрерывна на всей прямой. Если сумма квадратов двух целых чисел делится на 3, то каждое из этих чисел делится на 3. Доказать. Окружность S1 проходит через центр окружности S2 и пересекает её в точках A и B . Хорда AC окружности S1 касается окружности S2 в точке A и делит первую окружность на дуги, градусные меры которых относятся как 5:7 . Найдите градусные меры дуг, на которые окружность S2 делится окружностью S1 .
Назовем усреднением последовательности ak действительных чисел последовательность
a'k с общим членом a'k= |
Задача 109520
Условие
Назовем усреднением последовательности ak действительных чисел последовательность
a'k с общим членом a'k= Решение
Назовем последовательность m -хорошей, если если она сама и первые ее m усреднений
состоят из целых чисел. Докажем, пользуясь методом математической индукции, что если
последовательность xk – хорошая, то последовательность xk2 – m -хорошая для
любого целого неотрицательного числа m . Из этого и вытекает утверждение задачи. Очевидно, что
если последовательность xk – хорошая, то последовательность xk2 – 0-хорошая.
Предположим, что последовательность xk2 – m -хорошая, и докажем, что она
(m+1) -хорошая. Это следует из тождества
Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке