ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В тетраэдре ABCD плоские углы BAD и BCD – тупые. Сравните длины ребер AC и BD. Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник. Докажите, что из всех треугольников данного периметра 2p равносторонний имеет наибольшую плошадь. Рассматриваются такие квадратичные функции f(x) = ax² + bx + c, что a < b и f(x) ≥ 0 для всех x. Пусть a, b, c – положительные числа, сумма которых равна 1.
Докажите неравенство:
В равнобочной трапеции ABCD угол при основании AD равен
arcsin Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки,
лежащие на соседних гранях, соединили отрезком. Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник. В данную окружность вписать прямоугольник так, чтобы две данные точки внутри окружности лежали на сторонах прямоугольника. Можно ли из 13 кирпичей 1×1×2 сложить куб 3×3×3 с дыркой 1×1×1 в центре?
В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов. |
Задача 110178
УсловиеВ 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов. Решение Лемма. Любые 2n пар положительных чисел (ai, bi) можно так разбить на две группы по n пар в каждой, что сумма ai в первой группе отличается от суммы ai во второй группе не более, чем на максимальное ai, и сумма bi в первой группе отличается от суммы bi во второй группе не более, чем на максимальное bi. Выберем из наших ящиков тот, что содержит наибольшее количество апельсинов, а затем из оставшихся – тот, что содержит наибольшее количество яблок. Оставшиеся ящики согласно лемме можно разбить на две группы по 49 ящиков так, что разность количества апельсинов в первой и второй группах не превосходит числа апельсинов в первом ящике, и разность числа яблок в первой и второй группах не превосходит числа яблок во втором ящике. Добавим эти два ящика в ту группу, где не меньше бананов. Полученный набор из 51 ящика удовлетворяет условиям задачи. ЗамечанияСр. с задачей 110198. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке