Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 15 задач
Версия для печати
Убрать все задачи

Пусть P(x) – квадратный трёхчлен с неотрицательными коэффициентами.
Докажите, что для любых действительных чисел x и y справедливо неравенство  (P(xy))² ≤ P(x²)P(y²).

Вниз   Решение


Назовём натуральные числа похожими, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.

ВверхВниз   Решение


Натуральные числа d и  d' > d  – делители натурального числа n. Докажите, что  d' > d + d²/n.

ВверхВниз   Решение


Автор: Митькин Д.

Длины сторон треугольника – простые числа. Докажите, что его площадь не может быть целым числом.

ВверхВниз   Решение


Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите все такие значения α, не превосходящие 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник.

ВверхВниз   Решение


Найдите все такие пары квадратных трёхчленов  x² + ax + bx² + cx + d,  что a и b – корни второго трёхчлена, c и d – корни первого.

ВверхВниз   Решение


Фокусник выкладывает 36 карт в виде квадрата 6×6 (в 6 столбцов по 6 карт) и просит Зрителя мысленно выбрать карту и запомнить столбец, её содержащий. После этого Фокусник определённым образом собирает карты, снова выкладывает в виде квадрата 6×6 и просит Зрителя назвать номера столбцов, содержащих выбранную карту в первый и второй раз. После ответа Зрителя Фокусник безошибочно отгадывает карту. Как действовать Фокуснику, чтобы фокус гарантированно удался?

ВверхВниз   Решение


На отрезке  [0, 2002]  отмечены его концы и точка с координатой d, где d – взаимно простое с 1001 число. Разрешается отметить середину любого отрезка с концами в отмеченных точках, если её координата целая. Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

ВверхВниз   Решение


Автор: Замятин В.

При каком наименьшем n квадрат n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?

ВверхВниз   Решение


Автор: Садыков Р.

На координатной плоскости расположены четыре фишки, центры которых имеют целочисленные координаты. Разрешается сдвинуть любую фишку на вектор, соединяющий центры любых двух из остальных фишек. Докажите, что несколькими такими перемещениями можно совместить любые две наперед заданные фишки.

ВверхВниз   Решение


В некоторые 16 клеток доски 8×8 поставили по ладье. Какое наименьшее количество пар бьющих друг друга ладей могло при этом оказаться?

ВверхВниз   Решение


Автор: Лифшиц Ю.

Опишите все способы покрасить каждое натуральное число в один из трёх цветов так, чтобы выполнялось условие: если числа a, b и c (не обязательно различные) удовлетворяют условию  2000(a + b) = c,  то они либо все одного цвета, либо трёх разных цветов.

ВверхВниз   Решение


Вписанные окружности граней SBC , SAC и SAB треугольной пирамиды SABC попарно пересекаются и имеют радиусы , и соответственно. Точка K является точкой касания окружностей со стороной SA , причём SK=5 . Найдите длину отрезка AK , периметр и радиус вписанной окружности треугольника ABC .

ВверхВниз   Решение


Окружность касается стороны AD четырёхугольника ABCD в точке D , а стороны BC – в её середине M . Диагональ AC пересекает окружность в точках K и L , ( AK<AL ). Известно, что AK=3 , KL=5 , LC=1 . Лучи AD и BC пересекаются в точке S , причём ASB = 60o . Найдите радиус окружности и площадь четырёхугольника ABCD .

ВверхВниз   Решение


Окружность σ касается равных сторон AB и AC равнобедренного треугольника ABC и пересекает сторону BC в точках K и L . Отрезок AK пересекает σ второй раз в точке M . Точки P и Q симметричны точке K относительно точек B и C соответственно. Докажите, что описанная окружность треугольника PMQ касается окружности σ .

Вверх   Решение

Задача 111620
Темы:    [ Гомотетия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Окружность σ касается равных сторон AB и AC равнобедренного треугольника ABC и пересекает сторону BC в точках K и L . Отрезок AK пересекает σ второй раз в точке M . Точки P и Q симметричны точке K относительно точек B и C соответственно. Докажите, что описанная окружность треугольника PMQ касается окружности σ .

Решение

Пусть D и E – точки касания окружности со сторонами AB и AC . Тогда AD=AE , поэтому углы при основании DE равнобедренного треугольника ADE равны углам при основании BC равнобедренного треугольника ABC , значит, DE || BC . При гомотетии с центром A и коэффициентом точка M переходит в точку K , окружность σ – в некоторую окружность σ1 , проходящую через точку K , точка D касания прямой AB с окружностью σ – в точку D' касания прямой AD с окружностью σ1 , отрезок MD – в параллельный ему отрезок KD' . По теореме о касательной и секущей

BD2 = BL· BK =BD'2,

значит, BD=BD' , а т.к. BK=BP , то четырёхугольник DKD'P – параллелограмм, поэтому DP || KD' . Следовательно, точки M , D и P лежат на одной прямой. Аналогично, точки M , E и Q лежат на одной прямой. При гомотетии с центром M , переводящей точку D в точку P , точка E переходит в точку Q , треугольник DME – в треугольник PMQ , а окружность, описанная около треугольника DME – в окружность, описанную около треугольника PMQ . Следовательно, эти две окружности касаются в точке M .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4165

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .