ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть P(x) – квадратный трёхчлен с неотрицательными
коэффициентами. Назовём натуральные числа похожими, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему. Натуральные числа d и d' > d – делители натурального числа n. Докажите, что d' > d + d²/n. Длины сторон треугольника – простые числа. Докажите, что его площадь не может быть целым числом. Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите все такие значения α, не превосходящие 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник. Найдите все такие пары квадратных трёхчленов x² + ax + b, x² + cx + d, что a и b – корни второго трёхчлена, c и d – корни первого. Фокусник выкладывает 36 карт в виде квадрата 6×6 (в 6 столбцов по 6 карт) и просит Зрителя мысленно выбрать карту и запомнить столбец, её содержащий. После этого Фокусник определённым образом собирает карты, снова выкладывает в виде квадрата 6×6 и просит Зрителя назвать номера столбцов, содержащих выбранную карту в первый и второй раз. После ответа Зрителя Фокусник безошибочно отгадывает карту. Как действовать Фокуснику, чтобы фокус гарантированно удался? На отрезке [0, 2002] отмечены его концы и точка с координатой d, где d – взаимно простое с 1001 число. Разрешается отметить середину любого отрезка с концами в отмеченных точках, если её координата целая. Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке? При каком наименьшем n квадрат n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали? На координатной плоскости расположены четыре фишки, центры которых имеют целочисленные координаты. Разрешается сдвинуть любую фишку на вектор, соединяющий центры любых двух из остальных фишек. Докажите, что несколькими такими перемещениями можно совместить любые две наперед заданные фишки. В некоторые 16 клеток доски 8×8 поставили по ладье. Какое наименьшее количество пар бьющих друг друга ладей могло при этом оказаться? Опишите все способы покрасить каждое натуральное число в один из трёх цветов так, чтобы выполнялось условие: если числа a, b и c (не обязательно различные) удовлетворяют условию 2000(a + b) = c, то они либо все одного цвета, либо трёх разных цветов.
Вписанные окружности граней SBC , SAC и SAB треугольной
пирамиды SABC попарно пересекаются и имеют радиусы
Окружность касается стороны AD четырёхугольника ABCD в
точке D , а стороны BC – в её середине M . Диагональ
AC пересекает окружность в точках K и L , ( AK<AL ).
Известно, что AK=3 , KL=5 , LC=1 . Лучи AD и BC
пересекаются в точке S , причём Окружность σ касается равных сторон AB и AC равнобедренного треугольника ABC и пересекает сторону BC в точках K и L . Отрезок AK пересекает σ второй раз в точке M . Точки P и Q симметричны точке K относительно точек B и C соответственно. Докажите, что описанная окружность треугольника PMQ касается окружности σ . |
Задача 111620
Условие
Окружность σ касается равных сторон AB и AC
равнобедренного треугольника ABC и пересекает сторону
BC в точках K и L . Отрезок AK пересекает σ
второй раз в точке M . Точки P и Q симметричны точке
K относительно точек B и C соответственно. Докажите,
что описанная окружность треугольника PMQ касается
окружности σ .
Решение
Пусть D и E – точки касания окружности со сторонами
AB и AC . Тогда AD=AE , поэтому углы при основании
DE равнобедренного треугольника ADE равны углам при
основании BC равнобедренного треугольника ABC , значит,
DE || BC .
При гомотетии с центром A и коэффициентом значит, BD=BD' , а т.к. BK=BP , то четырёхугольник DKD'P – параллелограмм, поэтому DP || KD' . Следовательно, точки M , D и P лежат на одной прямой. Аналогично, точки M , E и Q лежат на одной прямой. При гомотетии с центром M , переводящей точку D в точку P , точка E переходит в точку Q , треугольник DME – в треугольник PMQ , а окружность, описанная около треугольника DME – в окружность, описанную около треугольника PMQ . Следовательно, эти две окружности касаются в точке M . Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке