Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

В тетраэдре ABCD плоские углы BAD и BCD – тупые. Сравните длины ребер AC и BD.

Вниз   Решение


Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.

ВверхВниз   Решение


Докажите, что из всех треугольников данного периметра 2p равносторонний имеет наибольшую плошадь.

ВверхВниз   Решение


Рассматриваются такие квадратичные функции  f(x) = ax² + bx + c,  что  a < b  и  f(x) ≥ 0  для всех x.
Какое наименьшее значение может принимать выражение  a+b+c/b–a ?

ВверхВниз   Решение


Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  

ВверхВниз   Решение


В равнобочной трапеции ABCD угол при основании AD равен arcsin . Окружность радиуса R касается основания AD , боковой стороны AB и проходит через вершину C . Она отсекает на сторонах BC и CD отрезки MC и NC соответственно. Найдите BM .

ВверхВниз   Решение


Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем    .

ВверхВниз   Решение


Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник.

ВверхВниз   Решение


В данную окружность вписать прямоугольник так, чтобы две данные точки внутри окружности лежали на сторонах прямоугольника.

ВверхВниз   Решение


Автор: Ботин Д.А.

Можно ли из 13 кирпичей 1×1×2 сложить куб 3×3×3 с дыркой 1×1×1 в центре?

ВверхВниз   Решение


В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.

ВверхВниз   Решение


Из точки D окружности S опущен перпендикуляр DC на диаметр AB . Окружность S1 касается отрезка CA в точке E , а также отрезка CD и окружности S . Докажите, что DE — биссектриса треугольника ADC .

Вверх   Решение

Задача 111700
Темы:    [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Касательные прямые и касающиеся окружности (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Из точки D окружности S опущен перпендикуляр DC на диаметр AB . Окружность S1 касается отрезка CA в точке E , а также отрезка CD и окружности S . Докажите, что DE — биссектриса треугольника ADC .

Решение

Докажем сначала, что BD=BE . Пусть окружность S1 касается окружности S в точке N , отрезка CD — в точке M , а продолжение отрезка DC пересекает окружность S в точке F . Заметим, что точка B — середина дуги DF , не содержащей точку A . Расмотрим гомотетию с центром в точке N касания окружностей, переводящую окружность S1 в окружность S . Касательная DF к окружности S1 перейдёт в параллельную ей касательную l к окружности S . Касательная, параллельная хорде DF , делит дугу DF пополам. Тогда точка M перейдёт в середину B дуги DF , не содержащей точку N . Следовательно, прямая MN проходит через середину B этой дуги. Применив теорему о касательной и секущей, теорему о произведении отрезков пересекающихся хорд и теорему Пифагора, получим, что

BE2 = BM· BN = BM(BM+MN)= BM2+BM· MN =


=(BC2+CM2) + DM· MF = (BC2+CM2) + (CD-CM)(CF+CM)=


=(BC2+CM2) + (CD-CM)(CD+CM)= (BC2+CM2) + (CD2-CM2)=


=BC2+CD2 = BD2.

Следовательно, BE=BD . Что и требовалось доказать. (Другой способ. Вписаные углы DNB и DAB опираются на одну и ту же дугу, поэтому
DNB = DAB = 90o- DBA = BDM,

значит, треугольники BMD и BDN подобны по двум углам. Тогда = . Следовательно,
BE2 = BM· BN = BD2.

Что и требовалось доказать.) Перейдём к нашей задаче. Поскольку точка D лежит на окружности с диаметром AB , треугольник ADB — прямоугольный. Обозначим ABD = α . Тогда
ADC = α, BDC = 90o- α, BDE = BED = 90o-,


CDE = BDE - BDC = (90o-)- (90o- α)= = ADC.

Что и требовалось доказать.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2894

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .