Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке.

Докажите, что  ∠APB = ∠CQD.

Вниз   Решение


Автор: Шмаров В.

Периметр треугольника ABC равен 4. На лучах AB и AC отмечены точки X и Y так, что  AX = AY = 1.  Отрезки BC и XY пересекаются в точке M. Докажите, что периметр одного из треугольников ABM и ACM равен 2.

ВверхВниз   Решение


Автор: Фольклор

Разрежьте фигуру на рис. на 8 одинаковых частей.

ВверхВниз   Решение


Найти сумму 1 + 2002 + 20022 + ... + 2002n.

ВверхВниз   Решение


В строку записаны в некотором порядке натуральные числа от 1 до 1993. Над строкой производится следующая операция: если на первом месте стоит число k, то первые k чисел в строке переставляются в обратном порядке. Докажите, что через несколько таких операций на первом месте окажется число 1.

ВверхВниз   Решение


Докажите, что в прямоугольном треугольнике каждый катет меньше гипотенузы.

ВверхВниз   Решение


Если у осьминога четное число ног, он всегда говорит правду. Если нечетное, то он всегда лжет. Однажды зеленый осьминог сказал темно-синему:
- У меня 8 ног. А у тебя только 6.
- Это у меня 8 ног, - обиделся темно-синий. - А у тебя всего 7.
- У темно-синего действительно 8 ног, - поддержал фиолетовый и похвастался: - А вот у меня целых 9!
- Ни у кого из вас не 8 ног, - вступил в разговор полосатый осьминог. - Только у меня 8 ног!
У кого из осьминогов было ровно 8 ног?

ВверхВниз   Решение


На плоскости даны 9 точек (см. рисунок). Перечеркните их все четырьмя прямыми отрезками, не отрывая карандаша от бумаги.

ВверхВниз   Решение


Дед звал внука к себе в деревню:
  – Вот посмотришь, какой я необыкновенный сад посадил! У меня там растёт четыре груши, а ещё есть яблони, причём они посажены так, что на расстоянии 10 метров от каждой яблони растёт ровно две груши.
  – Ну и что тут интересного, – ответил внук. – У тебя всего две яблони.
 – А вот и не угадал, – улыбнулся дед. – Яблонь у меня в саду больше, чем груш.
Нарисуйте, как могли расти яблони и груши в саду у деда. Постарайтесь разместить на рисунке как можно больше яблонь, не нарушая условий.

ВверхВниз   Решение


Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

ВверхВниз   Решение


Скупой рыцарь хранит золотые монеты в 77 сундуках. Однажды, пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну по этим двум сундукам. Потом он заметил, что если открыть любые 3, или любые 4, ..., или любые 76 сундуков, то тоже можно так переложить лежащие в них монеты, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга не успел проверить, можно ли разложить все монеты поровну по всем 77 сундукам. Можно ли, не заглядывая в сундуки, дать точный ответ на этот вопрос?

ВверхВниз   Решение


На сторонах AB и BC треугольника ABC выбраны точки K и M соответственно так, что  KM || AC.  Отрезки AM и KC пересекаются в точке O. Известно, что  AK = AO  и  KM = MC.  Докажите, что  AM = KB.

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AD , BE и CF , пересекающиеся в точке I . Серединный перпендикуляр к отрезку AD пересекает прямые BE и CF в точках M и N соответственно. Докажите, что точки A , I , M и N лежат на одной окружности.

Вверх   Решение

Задача 115359
Темы:    [ Четыре точки, лежащие на одной окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Углы между биссектрисами ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Вспомогательная окружность ]
Сложность: 4
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В треугольнике ABC проведены биссектрисы AD , BE и CF , пересекающиеся в точке I . Серединный перпендикуляр к отрезку AD пересекает прямые BE и CF в точках M и N соответственно. Докажите, что точки A , I , M и N лежат на одной окружности.

Решение

Для решения задачи достаточно установить, что MAI = MNI (см. рис.) Пусть K  — середина отрезка AD . Заметим, что MNI = KNI = 90o - KIN = 90o - ( ACI + CAI) = (180o - ( ACB + BAC)) = ABC .
Остаётся установить, что MAI = ABC . Пусть M'  — точка пересечения окружности, описанной около треугольника ABD , с серединным перпендикуляром к отрезку AD (точка M' лежит на дуге AD , не содержащей точку B ). Тогда AM' = DM' , а значит, и M'BD = M'BA , как опирающиеся на равные дуги. Это означает, что точка M' лежит на биссектрисе угла ABC и, следовательно, M' совпадает с M . Итак, точки A , M , D и B лежат на одной окружности, откуда MAI = MBD = ABC , что и требовалось.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2009-2010
Этап
Вариант 4
Класс
Класс 10
задача
Номер 06.4.10.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .