Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Точка M находится внутри диаметра AB окружности и отлична от центра окружности. По одну сторону от этого диаметра на окружности взяты произвольные различные точки P и Q , причём отрезки PM и QM образуют равные углы с диаметром. Докажите, что все прямые PQ проходят через одну точку.

Вниз   Решение


Первая окружность с центром в точке A касается сторон угла KOL в точках K и L. Вторая окружность с центром в точке B касается отрезка OK, луча LK и продолжения стороны угла OL за точку O. Известно, что отношение радиуса первой окружности к радиусу второй окружности равно $ {\frac{20}{9}}$. Найдите отношение отрезков OB и OA.

ВверхВниз   Решение


Микрокалькулятор МК-97 умеет над числами, занесенными в память, производить только три операции:
  1) проверять, равны ли выбранные два числа,
  2) складывать выбранные числа,
  3) по выбранным числам a и b находить корни уравнения  x² + ax + b = 0,  а если корней нет, выдавать сообщение об этом.
Результаты всех действий заносятся в память. Первоначально в памяти записано одно число x. Как с помощью МК-97 узнать, равно ли это число единице?

ВверхВниз   Решение


Найти решение уравнения     в целых числах.

ВверхВниз   Решение


В треугольнике ABC точка M – середина стороны BC, AA1, BB1 и CC1 – высоты. Прямые AB и A1B1 пересекаются в точке X, а прямые MC1 и AC – в точке Y. Докажите, что  XY || BC .

ВверхВниз   Решение


Автор: Фольклор

Найдите наименьшее значение  x² + y²,  если  x2y² + 6x + 4y + 5 = 0.

ВверхВниз   Решение


Центр окружности, вписанной в прямоугольный треугольник, находится на расстояниях и от концов гипотенузы. Найдите катеты.

ВверхВниз   Решение


В стране несколько городов, некоторые пары городов соединены двусторонними беспосадочными авиалиниями, принадлежащими k авиакомпаниям. Известно, что каждые две линии одной авиакомпании имеют общий конец. Докажите, что все города можно разбить на  k + 2  группы так, что никакие два города из одной группы не соединены авиалинией.

ВверхВниз   Решение


Год проведения нынешнего математического праздника делится на его номер:  2006 : 17 = 118.
  а) Назовите первый номер матпраздника, для которого это тоже было выполнено.
  б) Назовите последний номер матпраздника, для которого это тоже будет выполнено.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD диагональ AC делит пополам отрезок, соединяющий середины сторон BC и AD . В каком отношении она делит диагональ BD ?

ВверхВниз   Решение


Найдите объём тетраэдра ABCD с рёбрами AB=5 , AC=1 и CD = 7 , если расстояние между серединами M и N его рёбер AC и BD равно 3, а прямая AC образует равные углы с прямыми AB , CD и MN .

ВверхВниз   Решение


Числа от 1 до 37 записали в строку так, что сумма любых первых нескольких чисел делится на следующее за ними число.
Какое число стоит на третьем месте, если на первом месте написано число 37, а на втором – 1?

ВверхВниз   Решение


Окружность радиуса 3 проходит через вершину B , середины сторон AB и BC , а также касается стороны AC треугольника ABC . Угол BAC — острый, и sin BAC = . Найдите площадь треугольника ABC .

Вверх   Решение

Задача 116100
Темы:    [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема синусов ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Окружность радиуса 3 проходит через вершину B , середины сторон AB и BC , а также касается стороны AC треугольника ABC . Угол BAC — острый, и sin BAC = . Найдите площадь треугольника ABC .

Решение

Пусть M и N — середины сторон BC и AB соответственно, K — точка касания описанной окружности треугольника BMN со стороной AC , O —центр окружности, R=3 — её радиус. Отрезок MN — средняя линия треугольника ABC , поэтому MN || AC , значит, BNM = BSC . По теореме синусов

BM=2R sin BNM = 2R sin BAC = 2· 3·= 2, BC=2BM = 4.

По теореме о касательной секущей
CK = = =2.


Пусть P — основание перпендикуляра, опущенного из центра O окружности на прямую BC . Тогда P — середина BM , поэтому MP=BP=1 и CP=CM+MP = 2+1=3 . Из порямоугольного треугольника BOP находим, что
OP===2.


Прямоугольные треугольники OKC и CPO равны по двум катетам ( OK=CP=3 и CK=OP=2 ), поэтому COK = OCP , а т.к. KCO=90o- COK , то OCP+ KCO = 90o . Таким образом, треугольник ABC — прямоугольный. Тогда
AB= = =12, AC==8.

Следовательно,
SΔ ABC=AC· BC = · 8 · 4 = 16.


Ответ

16 .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6143

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .