Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

В сегмент вписываются всевозможные пары касающихся окружностей. Найдите множество их точек касания.

Вниз   Решение


Автор: Калинин А.

Докажите, что уравнение  x³ + y³ = 4(x²y + xy² + 1)  не имеет решений в целых числах.

ВверхВниз   Решение


Автор: Пастор А.

Окружность, построенная на стороне AC остроугольного треугольника ABC как на диаметре, пересекает стороны AB и BC в точках K и L. Касательные к этой окружности, проведённые в точках K и L, пересекаются в точке M. Докажите, что прямая BM перпендикулярна AC.

ВверхВниз   Решение


Найдите x1000, если  x1 = 4,  x2 = 6,  и при любом натуральном  n ≥ 3  xn – наименьшее составное число, большее   2xn–1xn–2.

ВверхВниз   Решение


На клетчатой бумаге нарисован прямоугольник, стороны которого образуют углы в 45° с линиями сетки, а вершины не лежат на линиях сетки.
Может ли каждую сторону прямоугольника пересекать нечётное число линий сетки?

ВверхВниз   Решение


На прямой расположены 2k-1 белый и 2k-1 черный отрезок. Известно, что любой белый отрезок пересекается хотя бы с k черными, а любой черный – хотя бы с k белыми. Докажите, что найдутся черный отрезок, пересекающийся со всеми белыми, и белый отрезок, пересекающийся со всеми черными.

ВверхВниз   Решение


Существуют ли 10 таких различных целых чисел, что все суммы, составленные из девяти из них – точные квадраты?

ВверхВниз   Решение


На плоскости дано множество из n9 точек. Для любых 9 его точек можно выбрать две окружности так, что все эти точки окажутся на выбранных окружностях. Докажите, что все n точек лежат на двух окружностях.

ВверхВниз   Решение


Автор: Фольклор

Вписанная окружность треугольника ABC касается его сторон ВС, АС и АВ в точках A', B' и C' соответственно. Точка K – проекция точки C' на прямую A'B'. Докажите, что KC' – биссектриса угла AKB.

Вверх   Решение

Задача 116440
Темы:    [ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Автор: Фольклор

Вписанная окружность треугольника ABC касается его сторон ВС, АС и АВ в точках A', B' и C' соответственно. Точка K – проекция точки C' на прямую A'B'. Докажите, что KC' – биссектриса угла AKB.


Решение

  Прежде всего отметим, что точка K лежит между точками A' и B', так как треугольник A'B'C' – остроугольный. Действительно, нетрудно проверить, что, например, угол A'B'C' равен  90° – ½ ∠A.

  Опустим перпендикуляр AL на B'C'. Прямоугольные треугольники ALB' и C'KA' подобны по острому углу. Поэтому
  Аналогично     Перемножая эти равенства, получим     откуда следует подобие треугольников AB'K и BA'K (углы AB'K и BA'K равны как смежные к углам равнобедренного треугольника A'CB'). Значит, углы AKB' и BKA' равны, что эквивалентно утверждению задачи.

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2011/12
Класс
1
Класс 11
задача
Номер 11.4.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .