Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 15 задач
Версия для печати
Убрать все задачи

Докажите, что в треугольнике угол A острый тогда и только тогда, когда ma > a/2.

Вниз   Решение


На плоскости взяты шесть точек A1, A2, A3, B1, B2, B3. Докажите, что если описанные окружности треугольников A1A2B3, A1B2A3 и B1A2A3 проходят через одну точку, то и описанные окружности треугольников B1B2A3, B1A2B3 и A1B2B3 пересекаются в одной точке.

ВверхВниз   Решение


AL – биссектриса треугольника ABC, K – такая точка на стороне AC, что  CK = CL.  Прямая KL и биссектриса угла B пересекаются в точке P.
Докажите, что  AP = PL.

ВверхВниз   Решение


Взяли три числа x, y, z. Вычислили абсолютные величины попарных разностей x1 = |x - y|, y1 = |y - z|, z1 = |z - x|. Тем же способом по числам x1, y1, z1 построили числа x2, y2, z2 и т.д. Оказалось, что при некотором n xn = x, yn = y, zn = z. Зная, что x = 1, найти y и z.

ВверхВниз   Решение


Докажите, что для любого n существует окружность, на которой лежит ровно n целочисленных точек.

ВверхВниз   Решение


Докажите, что проективное преобразование прямой однозначно определяется образами трех произвольных точек.

ВверхВниз   Решение


Биссектриса треугольника делит одну из его сторон на отрезки 3 см и 5 см. В каких границах изменяется периметр треугольника?

ВверхВниз   Решение


Пусть хорды KL и MN проходят через середину O хорды AB. Докажите, что прямые KN и ML пересекают прямую AB в точках, равноудаленных от точки O.

ВверхВниз   Решение


Через центр окружности проведены еще четыре окружности, касающиеся данной (см. рис.). Сравните площади фигур, выделенных на рисунке черным и серым цветом соответственно.

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон AC и BC в точках B1 и A1. Докажите, что если AC > BC, то AA1 > BB1.

ВверхВниз   Решение


Продолжения биссектрис треугольника ABC пересекают описанную окружность в точках A1, B1 и C1. Докажите, что  SABC/SA1B1C1 = 2r/R, где r и R — радиусы вписанной и описанной окружностей треугольника ABC.

ВверхВниз   Решение


В треугольнике ABC проведена медиана AM. Докажите, что 2AM$ \ge$(b + c)cos($ \alpha$/2).

ВверхВниз   Решение


Автор: Фольклор

Прямоугольник ABCD  (AB = a,  BC = b)  сложили так, что получился пятиугольник площади S (C легла в A). Докажите, что  S < ¾ ab.

ВверхВниз   Решение


Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали.

ВверхВниз   Решение


После возвращения цирка с гастролей, знакомые расспрашивали дрессировщика Казимира Алмазова о пассажирах его автофургона.
  – Тигры были?
  – Да, причём их было в семь раз больше, чем не тигров.
  – А обезьяны?
  – Да, их было в семь раз меньше, чем не обезьян.
  – А львы были?
Ответьте за Казимира Алмазова.

Вверх   Решение

Задача 116481
Тема:    [ Задачи на проценты и отношения ]
Сложность: 2
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

После возвращения цирка с гастролей, знакомые расспрашивали дрессировщика Казимира Алмазова о пассажирах его автофургона.
  – Тигры были?
  – Да, причём их было в семь раз больше, чем не тигров.
  – А обезьяны?
  – Да, их было в семь раз меньше, чем не обезьян.
  – А львы были?
Ответьте за Казимира Алмазова.


Решение

Количество тигров составляет ⅞, а количество обезьян – ⅛ от общего количества всех животных. Значит, других животных в фургоне не было.


Ответ

Львов не было.

Замечания

Ответ в задаче не изменится, если в условии вместо числа 7 поставить любое другое положительное число.

Источники и прецеденты использования

олимпиада
Название Окружная олимпиада (Москва)
год
Год 2011
Класс
Класс 9
Задача
Номер 9.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .