Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 16 задач
Версия для печати
Убрать все задачи

У Носорога на шкуре есть вертикальные и горизонтальные складки. Всего складок 17. Если Носорог чешется боком о дерево, то либо две горизонтальные, либо две вертикальные складки на этом боку пропадают, зато на другом боку прибавляются две складки: горизонтальная и вертикальная. (Если двух складок одного направления нет, то ничего не происходит.) Носорог почесался несколько раз. Могло ли случиться, что на каждом боку вертикальных складок стало столько, сколько там раньше было горизонтальных, а горизонтальных стало столько, сколько там было вертикальных?

Вниз   Решение


На плоскости даны оси координат с одинаковым, но не обозначенным масштабом и график функции

y= sin x, x(0).

Как с помощью циркуля и линейки построить касательную к этому графику в заданной его точке, если: а) α() ; б) α(0;) ?

ВверхВниз   Решение


Несколько спортсменов стартовали одновременно с одного и того же конца прямой беговой дорожки. Их скорости различны, но постоянны. Добежав до конца дорожки, спортсмен мгновенно разворачивается и бежит обратно, затем разворачивается на другом конце, и т.д. В какой-то момент все спортсмены снова оказались в одной точке. Докажите, что такие встречи всех будут продолжаться и впредь.

ВверхВниз   Решение


На параболе  y = x²  выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.

ВверхВниз   Решение


Тридцать три богатыря нанялись охранять Лукоморье за 240 монет. Хитрый дядька Черномор может разделить богатырей на отряды произвольной численности (или записать всех в один отряд), а затем распределить всё жалованье между отрядами. Каждый отряд делит свои монеты поровну, а остаток отдаёт Черномору. Какое наибольшее количество монет может достаться Черномору, если:
  а) жалованье между отрядами Черномор распределяет как ему угодно;
  б) жалованье между отрядами Черномор распределяет поровну?

ВверхВниз   Решение


На стороне AC остроугольного треугольника ABC выбрана точка D. Медиана AM пересекает высоту CH и отрезок BD в точках N и K соответственно.
Докажите, что если  AK = BK,  то  AN = 2KM.

ВверхВниз   Решение


Автор: Иванов И.

В стране 100 городов, некоторые пары городов соединены дорогами. Для каждых четырёх городов существуют хотя бы две дороги между ними. Известно, что не существует маршрута, проходящего по каждому городу ровно один раз. Докажите, что можно выбрать два города таким образом, чтобы каждый из оставшихся городов был соединен дорогой хотя бы с одним из двух выбранных городов.

ВверхВниз   Решение


Одна из вневписанных окружностей треугольника ABC касается стороны AB и продолжений сторон CA и CB в точках C1, B1 и A1 соответственно. Другая вневписанная окружность касается стороны AC и продолжений сторон BA и BC в точках B2, C2 и A2 соответственно. Прямые A1B1 и A2B2 пересекаются в точке P, прямые A1C1 и A2C2 – в точке Q. Докажите, что точки A, P и Q лежат на одной прямой.

ВверхВниз   Решение


Сторону AB треугольника ABC разделили на n равных частей (точки деления  B0 = A,  B1, B2,  Bn = B),  а сторону AC этого треугольника разделили на
n + 1  равных частей (точки деления  C0 = A,  C1, C2, ..., Cn+1 = C).  Закрасили треугольники CiBiCi+1. Какая часть площади треугольника закрашена?

ВверхВниз   Решение


В параллелограмме ABCD диагональ АС в два раза больше стороны АВ. На стороне BC выбрана точка K так, что  ∠KDB = ∠BDA.
Найдите отношение  BK : KC.

ВверхВниз   Решение


В треугольнике ABC биссектрисы углов при вершинах A и C пересекаются в точке D. Найдите радиус описанной около треугольника ABC окружности, если радиус окружности с центром в точке O, описанной около треугольника ADC, равен R = 6, и $ \angle$ACO = 30o.

ВверхВниз   Решение


На клетчатой доске из 2012 строк и  k > 2  столбцов в какой-то клетке самого левого столбца стоит фишка. Двое ходят по очереди, за ход можно передвинуть фишку вправо, вверх или вниз на одну клетку, при этом нельзя передвигать фишку на клетку, в которой она уже побывала. Игра заканчивается, как только один из игроков передвинет фишку в самый правый столбец. Но будет ли такой игрок выигравшим или проигравшим – сообщается игрокам только в тот момент, когда фишка попадает в предпоследний столбец (второй справа). Может ли один из игроков обеспечить себе выигрыш?

ВверхВниз   Решение


Петя и Вася играют на бирже. Некоторые дни удачные, и в такие дни капитал Пети увеличивается на 1000, а капитал Васи – на 10%. А остальные дни неудачные – и тогда капитал Пети уменьшается на 2000, а капитал Васи уменьшается на 20%. Через некоторое время капитал Пети оказался таким же, как был в начале. А что произошло с капиталом Васи: уменьшился он, увеличился или остался прежним?

ВверхВниз   Решение


Семиугольник, три угла которого равны по 120o , вписан в окружность. Могут ли все его стороны быть различными по длине?

ВверхВниз   Решение


Известно, что трапеция KLMN — равнобедренная, KN$ \Vert$LM и KN < LM. Трапеция NKPM также равнобедренная, причём KP$ \Vert$NM и KP > NM. Найдите LN, если известно, что синус суммы двух углов $ \angle$NLM и $ \angle$KPN равен $ {\frac{3}{5}}$, а LP = 6.

ВверхВниз   Решение


Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число N от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно N орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?

Вверх   Решение

Задача 116835
Темы:    [ Теория игр (прочее) ]
[ Деление с остатком ]
[ Принцип Дирихле (углы и длины) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число N от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно N орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?


Решение

  Оценка сверху. Положив в коробочки 143,  286 = 2·143  и  572 = 4·143  ореха, Ноздрёв может при любом N переложить не более 71. Действительно, N можно представить в виде  143k + r,  где  0 ≤ k ≤ 7,  а  –71 ≤ r < 71.  Если  r = 0,  то  k > 0,  и число 143k можно набрать одной или несколькими коробочками, ничего не перекладывая. Если  r < 0,  то набрав коробочками число 143k, отложим из этих коробочек в пустую r орехов. Если  r > 0,  то  1001 – N = 143(7 – k) – r.  Переложив r орехов, получим несколько коробочек с  1001 – N  орехами. Тогда в остальных коробочках N орехов, их и предъявим.

  Оценка снизу. Покажем, что для любой раскладки есть N, которое потребует переложить не менее 71 ореха. Пусть в коробочках лежат x, y и z орехов. Шесть чисел x, y, z,  x + y,  x + z,  y + z  делят большой отрезок  [0, 1001]  на семь меньших (возможно, некоторые из них вырождены). Среди них есть отрезок длины не менее  1001 : 7 = 143.  На этом отрезке есть целое число, отстоящее от концов отрезка не менее чем на 71. Без перекладывания мы можем получать только наборы, где общее число орехов лежит на конце одного из семи малых отрезков. Чтобы изменить это число на r, надо переложить не менее r орехов.


Ответ

71 душу.

Замечания

1. 5 баллов.

2. Ср. с задачей 116828.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2012/13
Номер 34
вариант
Вариант осенний тур, сложный вариант, 10-11 класс
Задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .