ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Автомат при опускании гривенника выбрасывает пять двушек, а при опускании
двушки – пять гривенников. На сторонах выпуклого четырёхугольника ABCD внешним образом построены подобные ромбы, причём их острые углы α прилегают к вершинам A и C. Докажите, что отрезки, соединяющие центры противоположных ромбов, равны, а угол между ними равен α.
Позиционная система
счисления.
Докажите, что
при
q
n = akqk + ak - 1qk - 1 +...+ a1q + a0,
где
0 Дан 101 прямоугольник с целыми сторонами, не превышающими 100.
Какое наибольшее количество прямоугольников 4*1 можно разместить в квадрате 6*6 (не нарушая границ клеток)? На конгресс собрались учёные, среди которых есть друзья. Оказалось, что каждые два из них, имеющие на конгрессе равное число друзей, не имеют общих друзей. Доказать, что найдётся учёный, который имеет ровно одного друга из числа участников конгресса. 98 спичек разложили в 19 коробков и на каждом написали количество спичек в этом коробке. Может ли произведение этих чисел быть нечётным числом?
Найдите формулу n-го члена для
последовательностей, заданных условиями (
n
Докажите, что Докажите, что если ∠BAC = 2∠ABC, то BC² = (AC + AB)·AC. Рассматривается последовательность 1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ... Существует ли арифметическая прогрессия
Пусть
(1 + Найдите все значения а, для которых выражения
а + На неравных сторонах AB и AC треугольника ABC
внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине. |
Задача 56506
УсловиеНа неравных сторонах AB и AC треугольника ABC
внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине. Решениеа) Пусть B' – точка пересечения прямой AC и перпендикуляра к прямой AB1, восставленного из точки B1;
точка C' определяется аналогично. Так как б) Построим на стороне BC внешним образом равнобедренный треугольник BA1C с углом 360° – 2φ при вершине A1 (если φ < 90°, строим внутренним образом треугольник с углом 2φ). Так как сумма углов при вершинах трёх построенных равнобедренных треугольников равна 360°, треугольник A1B1C1 имеет углы 180° – φ, φ/2 и φ/2 (см. задачу 56503). В частности, этот треугольник равнобедренный, а значит, A1 = O. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке