ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны вершины A и C равнобедренной описанной
трапеции ABCD (AD| BC); известны также направления ее
оснований. Постройте вершины B и D.
Из произвольной точки M, лежащей внутри данного
угла с вершиной A, опущены перпендикуляры MP и MQ
на стороны угла. Из точки A опущен перпендикуляр AK
на отрезок PQ. Докажите, что
Косинус угла между скрещивающимися прямыми AB и CD равен
Вершина A остроугольного треугольника ABC
соединена отрезком с центром O описанной окружности. Из вершины A
проведена высота AH. Докажите, что
На окружности взяты точки A, B, C и D. Прямые AB
и CD пересекаются в точке M. Докажите, что
AC . AD/AM = BC . BD/BM.
Гипотенуза AB прямоугольного треугольника ABC равна 2 и является хордой некоторой окружности. Катет AC равен 1 и лежит внутри окружности, а его продолжение пересекает окружность в точке D, причём CD = 3. Найдите радиус окружности.
В треугольнике ABC на сторонах AB, BC и AD взяты соответственно точки K, L и M. Известно, что AK = 5, KB = 3, BL = 2, LC = 7, CM = 1, MA = 6, Найдите расстояние от точки M до середины KL.
За дядькой Черномором выстроилось чередой бесконечное число богатырей. Доказать, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечно много богатырей и все они стояли по росту (не обязательно в порядке убывания роста). Дан равносторонний треугольник со стороной $d$ и точка $P$, расстояния от которой до вершин треугольника равны положительным числам $a$, $b$ и $с$. Докажите, что найдётся равносторонний треугольник со стороной $a$ и точка $Q$, расстояния от которой до вершин этого треугольника равны $b$, $с$ и $d$.
Два неравных картонных диска разделены на 1965 равных секторов. На каждом из
дисков произвольно выбраны 200 секторов и раскрашены в красный цвет. Меньший
диск наложен на больший, так что их центры совпадают, а секторы целиком лежат
один против другого. Меньший диск поворачивают на всевозможные углы, кратные
Каждая диагональ выпуклого пятиугольника ABCDE
отсекает от него треугольник единичной площади. Вычислите
площадь пятиугольника ABCDE.
|
Задача 56759
УсловиеКаждая диагональ выпуклого пятиугольника ABCDE
отсекает от него треугольник единичной площади. Вычислите
площадь пятиугольника ABCDE.
РешениеТак как
SABE = SABC, то
EC || AB. Остальные
диагонали тоже параллельны соответствующим сторонам.
Пусть P — точка пересечения BD и EC. Если SBPC = x, то
SABCDE = SABE + SEPB + SEDC + SBPC = 3 + x
(
SEPB = SABE = 1, так как ABPE — параллелограмм). Так как
SBPC : SDPC = BP : DP = SEPB : SEPD,
то
x : (1 - x) = 1 : x, а значит,
x = ( Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке