Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Дан треугольник площади 1 со сторонами  a $ \leq$ b $ \leq$ c. Докажите, что  b $ \geq$ $ \sqrt{2}$.

Вниз   Решение


Внутри выпуклого n-угольника A1A2...An взята точка O так, что $ \overrightarrow{OA_1}$ +...+ $ \overrightarrow{OA_n}$ = $ \overrightarrow{0}$. Пусть d = OA1 +...+ OAn. Докажите, что периметр многоугольника не меньше 4d /n при n четном и не меньше 4dn/(n2 - 1) при n нечетном.

ВверхВниз   Решение


Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, ..., делится на 9, если в исходном числе зачеркнуть девятую цифру.

ВверхВниз   Решение


Квадрат $10\times10$ клеток надо покрыть полосками $1\times9$ клеток. Сделайте это так, чтобы каждая клетка была покрыта одной или двумя полосками, но никакой прямоугольник $1\times2$ не был покрыт в два слоя. (Полоски кладут по линиям сетки горизонтально или вертикально, полоски не должны выходить за границу квадрата.)

ВверхВниз   Решение


Найдите трехзначное число, которое представимо в виде суммы и двух, и трех, и четырех, и пяти, и шести квадратов различных натуральных чисел. Достаточно привести один пример.

ВверхВниз   Решение


Известно, что в кадр фотоаппарата, расположенного в точке O, не могут попасть предметы A и B такие, что угол AOB больше 179o. На плоскости поставлено 1000 таких фотоаппаратов. Одновременно каждым фотоаппаратом делают по одному снимку. Доказать, что найдётся снимок, на котором сфотографировано не больше 998 фотоаппаратов.

ВверхВниз   Решение


а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.

ВверхВниз   Решение


Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?

ВверхВниз   Решение


Окружность S1 вписана в угол A треугольника ABC. Из вершины C к ней проведена касательная (отличная от CA), и в образовавшийся треугольник с вершиной B вписана окружность S2. Из вершины A к S2 проведена касательная, и в образовавшийся треугольник с вершиной C вписана окружность S3
и т. д. Докажите, что окружность S7 совпадает с S1.

Вверх   Решение

Задача 56897
Темы:    [ Окружность, вписанная в угол ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 4
Классы: 9,10
Из корзины
Прислать комментарий

Условие

Окружность S1 вписана в угол A треугольника ABC. Из вершины C к ней проведена касательная (отличная от CA), и в образовавшийся треугольник с вершиной B вписана окружность S2. Из вершины A к S2 проведена касательная, и в образовавшийся треугольник с вершиной C вписана окружность S3
и т. д. Докажите, что окружность S7 совпадает с S1.


Решение

  Пусть ri – радиус окружности Si, hi – высота треугольника ABC, опущенная из вершины A при  i = 3k + 1,  из вершины B при  i = 3k + 2,  из вершины C при  i = 3k.  Формулу из задачи 56838 а) можно записать в виде  
  Перемножим i-е и (i+2)-е равенства, а затем поделив на (i+1)-е, получим  

  Правая часть полученного выражения не изменяется при замене i на  i + 3.  Поэтому  
  Поскольку все треугольники невырожденные,  r ≠ ri+3.  Поэтому  ri = ri+6.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 6
Название Разные задачи
Тема Треугольники (прочее)
задача
Номер 05.057.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .