Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Из 16 плиток размером 1×3 и одной плитки 1×1 сложили квадрат со стороной 7. Докажите, что плитка 1×1 лежит в центре квадрата или примыкает к его границе.

Вниз   Решение


Вокруг квадрата описан параллелограмм. Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют квадрат.

ВверхВниз   Решение


Квадрат разделен на четыре части двумя перпендикулярными прямыми, точка пересечения которых лежит внутри его. Докажите, что если площади трех из этих частей равны, то равны и площади всех четырех частей.

ВверхВниз   Решение


Докажите, что  la $ \leq$ $ \sqrt{p(p-a)}$.

ВверхВниз   Решение


В центре каждой клетки шахматной доски стоит по фишке. Фишки переставили так, что попарные расстояния между ними не уменьшились. Докажите, что в действительности попарные расстояния не изменились.

ВверхВниз   Решение


На плоскости дана окружность и не пересекающая ее прямая. Докажите, что существует проективное преобразование, переводящее данную окружность в окружность, а данную прямую — в бесконечно удаленную прямую.

ВверхВниз   Решение


Докажите, что  ra + rb + rc = 4R + r.

ВверхВниз   Решение


Докажите, что сумма расстояний от любой точки внутри треугольника до его вершин не меньше 6r.

Вверх   Решение

Задача 57441
Тема:    [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 5
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Докажите, что сумма расстояний от любой точки внутри треугольника до его вершин не меньше 6r.

Решение

Если  $ \angle$C $ \geq$ 120o, то сумма расстояний от любой точки внутри треугольника до его вершин не меньше a + b (задача 12.21); кроме того,  a + b $ \geq$ 6r (задача 12.27).
Если все углы треугольника меньше  120o, то в точке минимума суммы расстояний до вершин треугольника квадрат этой суммы равен  (a2 + b2 + c2)/2 + 2$ \sqrt{3}$S (задача 18.21, б)). Далее,  (a2 + b2 + c2)/2 $ \geq$ 2$ \sqrt{3}$S (задача 10.53, б)) и  4$ \sqrt{3}$S $ \geq$ 36r2 (задача 10.53, а)).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 10
Название Неравенства для элементов треугольника
Тема Неравенства для элементов треугольника.
параграф
Номер 5
Название Радиусы описанной, вписанной и вневписанных окружностей
Тема Неравенства с описанными, вписанными и вневписанными окружностями
задача
Номер 10.031

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .