Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Можно ли нарисовать правильный треугольник с вершинами в узлах квадратной сетки?

Вниз   Решение


Коля Васин задумал число от 1 до 200. За какое наименьшее число вопросов вы сможете его отгадать, если он отвечает на каждый вопрос
а) ``да'' или ``нет'';
б) ``да'', ``нет'' или ``не знаю''?

ВверхВниз   Решение


Докажите, что связный граф с 2n нечётными вершинами можно нарисовать, оторвав карандаш от бумаги ровно  n –1  раз и не проводя никакое ребро дважды.

ВверхВниз   Решение


Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Докажите, что этот многоугольник правильный.

ВверхВниз   Решение


Для последовательности {an}

$\displaystyle \lim\limits_{n\to\infty}^{}$$\displaystyle \left(\vphantom{a_{n+1}-\dfrac{a_n}{2}}\right.$an + 1 - $\displaystyle {\dfrac{a_n}{2}}$$\displaystyle \left.\vphantom{a_{n+1}-\dfrac{a_n}{2}}\right)$ = 0.

Докажите, что $ \lim\limits_{n\to\infty}^{}$an = 0.

ВверхВниз   Решение


Аня, Ваня и Саня сели в автобус, не имея медных монет, однако сумели заплатить за проезд, потратив по пять копеек каждый. Как им это удалось?

ВверхВниз   Решение


При каких натуральных a и b число logab будет рациональным?

ВверхВниз   Решение


Дана квадратная сетка на плоскости и треугольник с вершинами в узлах сетки. Докажите, что тангенс любого угла в треугольнике — число рациональное.

ВверхВниз   Решение


Постройте прямоугольник с данным отношением сторон, зная по одной точке на каждой из его сторон.

ВверхВниз   Решение


Длины всех сторон прямоугольного треугольника являются целыми числами, причем наибольший общий делитель этих чисел равен 1. Докажите, что его катеты равны 2mn и m2 - n2, а гипотенуза равна m2 + n2, где m и n — натуральные числа.



ВверхВниз   Решение


Пятеро молодых рабочих получили на всех зарплату - 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.

ВверхВниз   Решение


Бумажная лента постоянной ширины завязана простым узлом и затем стянута так, чтобы узел стал плоским (см. рис.).
Докажите, что узел имеет форму правильного пятиугольника.

ВверхВниз   Решение


Докажите иррациональность следующих чисел:

а)   ;

б)   ;

в)   ;

г)   ;

д)  cos 10° ;

е)  tg 10° ;

ж)  sin 1° ;

з)  log23 .

Вверх   Решение

Задача 60851
Темы:    [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Докажите иррациональность следующих чисел:

а)   ;

б)   ;

в)   ;

г)   ;

д)  cos 10° ;

е)  tg 10° ;

ж)  sin 1° ;

з)  log23 .


Решение

а) Пусть   = m/n,  где натуральные числа m и n взаимно просты. Тогда  m³ = 17n³.  Значит, m кратно 17, а n – нет. Следовательно, левая часть делится на 17³, а правая не делится. Противоречие.

б) Пусть    рационально, тогда и    рационально. Значит, и    рационально. Но иррациональность    доказывается аналогично а).

в) Пусть число  a =   рационально. Тогда    то есть число     рационально. Но это не так, что доказывается аналогично б).

г) Пусть число  b =   рационально. Тогда    Значит, и    рационально, что не так.

д) Пусть число  cos 10°  рационально. Тогда и число    рационально, что не так.

е) Пусть число  x = tg 10°  рационально. Тогда и число     рационально, что не так.

ж) Пусть число  sin 1°  рационально. Тогда и числа  sin 3°,  sin 6°  и  sin 18°  рациональны. Но     – число иррациональное. Противоречие.

з) Пусть  log23 = m/n,  где натуральные числа m и n взаимно просты. Тогда  3n = 2m,  что неверно.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 5
Название Числа, дроби, системы счисления
Тема Системы счисления
параграф
Номер 1
Название Рациональные и иррациональные числа
Тема Дроби
задача
Номер 05.013

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .