ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найти геометрическое место четвёртых вершин прямоугольников, три вершины которых лежат на двух данных концентрических окружностях, а стороны параллельны двум данным прямым. К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел. Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода). Из всех параллелограммов данной площади найти тот, у которого наибольшая диагональ минимальна. Разрежьте квадрат на 6 частей и сложите из них три одинаковых квадрата.
В треугольник вписана окружность, и точки касания её со сторонами треугольника соединены между собой. В полученный таким образом треугольник вписана новая окружность, точки касания которой со сторонами являются вершинами третьего треугольника, имеющего те же углы, что и первоначальный треугольник. Найти эти углы. В прямоугольной таблице произведение суммы чисел любого столбца на сумму чисел
любой строки равно числу, стоящему на их пересечении. На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно. |
Задача 65015
УсловиеНа стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно. РешениеТак как ∠ABM = ∠BMC = ∠MCD, то SABM : SBMC = AB : MC и SBMC : SCMD = BM : CD. Но треугольники ABM и MCD подобны, так что эти отношения равны и (SBMC)² = SABM·SMCD. По неравенству Коши SBMC ≤ ½ (SABM + SMCD), что равносильно утверждению задачи. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке