Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Из вершины A острого угла ромба ABCD опущены перпендикуляры AM и AN на продолжения сторон BC и CD. В четырёхугольник AMCN вписана окружность радиуса 1. Найдите сторону ромба, если $ \angle$BAC = 2arctg$ {\frac{1}{2}}$.

Вниз   Решение


Поставьте на плоскости 9 точек так, чтобы никакие 4 не лежали на одной прямой, но из любых шести нашлись 3, лежащие на одной прямой. (На рисунке проведите все прямые, на которых лежат по три отмеченные точки.)

ВверхВниз   Решение


Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?

ВверхВниз   Решение


Какое наибольшее число пятниц может быть в году?

ВверхВниз   Решение


К окружности радиуса 36 проведена касательная из точки, удаленной от центра на расстояние, равное 85. Найдите длину касательной.

ВверхВниз   Решение


Автор: Фольклор

В треугольнике ABC со сторонами  AB = 4,  AC = 6  проведена биссектриса угла A. На эту биссектрису опущен перпендикуляр BH.
Найдите MH, где M – середина BC.

ВверхВниз   Решение


Существует ли такой невыпуклый многогранник, что из некоторой точки М, лежащей вне него, не видна ни одна из его вершин?
(Многогранник сделан из непрозрачного материала, так что сквозь него ничего не видно.)

 

ВверхВниз   Решение


Может ли случиться, что шесть попарно непересекающихся параллелепипедов расположены в пространстве так, что из некоторой им не принадлежащей точки пространства не видно ни одной из их вершин? (Параллелепипеды непрозрачны.)

 

ВверхВниз   Решение


Найдите цифры a и b, для которых   = 0,bbbbb...

ВверхВниз   Решение


а) На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1, отличные от вершин треугольника. Докажите, что описанные окружности треугольников  AB1C1, A1BC1 и A1B1C пересекаются в одной точке.
б) Точки A1, B1 и C1 перемещаются по прямым BC, CA и AB так, что все треугольники A1B1C1 подобны одному и тому же треугольнику. Докажите, что точка пересечения описанных окружностей треугольников  AB1C1, A1BC1 и A1B1C остается при этом неподвижной. (Треугольники предполагаются не только подобными, но и одинаково ориентированными.)

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AA', BB', CC'. Известно, что в треугольнике A'B'C' эти прямые также являются биссектрисами.
Верно ли, что треугольник ABC равносторонний?

Вверх   Решение

Задача 65030
Темы:    [ Правильный (равносторонний) треугольник ]
[ Биссектриса угла (ГМТ) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В треугольнике ABC проведены биссектрисы AA', BB', CC'. Известно, что в треугольнике A'B'C' эти прямые также являются биссектрисами.
Верно ли, что треугольник ABC равносторонний?


Решение

  Из условия следует, что в четырёхугольнике A'C'B'C диагональ CC' является биссектрисой углов C и C', а, значит, осью симметрии. Поэтому
A'C = B'C,  A'C' = B'C',  ∠CB'A' = ∠CA'B'  и  ∠AB'C' = ∠BA'C'.  Аналогично  ∠BC'A' = ∠BA'C' = ∠AB'C' = ∠AC'B'.  Следовательно, треугольники  AB'C' и BA'C' равны, то есть  AB' = BA'  и  AC = BC.
  Равенство  AB = BC  доказывается аналогично.


Ответ

Верно.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2011
тур
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .