Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Пусть a, b, c, d, e и f – некоторые числа, причём  ace ≠ 0.  Известно, что значения выражений  |ax + b| + |cx + d|  и  |ex + f |  равны при всех значениях x.
Докажите, что  ad = bc.

Вниз   Решение


Точка I – центр вписанной окружности треугольника ABC, M – середина стороны AC, а W – середина дуги AB описанной окружности, не содержащей C. Оказалось, что  ∠AIM = 90°.  В каком отношении точка I делит отрезок CW?

ВверхВниз   Решение


Докажите, что для любого натурального числа  n > 1  найдутся такие натуральные числа a, b, c, d, что  a + b = c + d = ab – cd = 4n.

ВверхВниз   Решение


На плоскости отметили 30 точек, никакие три из которых не лежат на одной прямой, и провели семь красных прямых, не проходящих через отмеченные точки. Могло ли случиться, что каждый отрезок, соединяющий какие-то две отмеченные точки, пересекается хоть с одной красной прямой?

ВверхВниз   Решение


a и b – натуральные числа. Известно, что  a² + b²  делится на ab. Докажите, что  a = b.

ВверхВниз   Решение


Автор: Лифшиц Ю.

Дан треугольник ABC с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники ABC1, BCA1 и CAB1. Докажите, что треугольник A1B1C1 не может быть правильным.

ВверхВниз   Решение


В остроугольном треугольнике $ABC$ с высотой $AH=h$ проведена прямая через центры $O$ и $I$ описанной и вписанной окружностей. Эта прямая пересекает стороны $AB$ и $AC$ в точках $F$ и $N$ соответственно, причем около четырехугольника $BFNC$ можно описать окружность. Найдите сумму расстояний от ортоцентра треугольника $ABC$ до его вершин.

ВверхВниз   Решение


Найдите наименьшее натуральное число, кратное 80, в котором можно так переставить две его различные цифры, что получившееся число также будет кратно 80.

ВверхВниз   Решение


Бессмертная блоха прыгает по целым точкам на числовой прямой, стартуя с точки 0. Длина первого прыжка равна 3, второго – 5, третьего – 9, и так далее (длина k-го прыжка равна  2k + 1).  Направление прыжка (вправо или влево) блоха выбирает самостоятельно. Может ли так случиться, что блоха рано или поздно побывает в каждой натуральной точке (возможно, побывав в некоторых точках больше, чем по разу)?

Вверх   Решение

Задача 65254
Темы:    [ Суммы числовых последовательностей и ряды разностей ]
[ Геометрическая прогрессия ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Бессмертная блоха прыгает по целым точкам на числовой прямой, стартуя с точки 0. Длина первого прыжка равна 3, второго – 5, третьего – 9, и так далее (длина k-го прыжка равна  2k + 1).  Направление прыжка (вправо или влево) блоха выбирает самостоятельно. Может ли так случиться, что блоха рано или поздно побывает в каждой натуральной точке (возможно, побывав в некоторых точках больше, чем по разу)?


Решение

  Покажем, как блоха может прыгать, попадая последовательно в точки 0, 1, 2, 3, ... (каждый раз – за несколько прыжков). Для этого достаточно показать, как, попав в точку n, за несколько прыжков попасть в точку  n + 1.
  Пусть до попадания в точку n блоха совершила  k – 1  прыжок (то есть длина следующего прыжок будет равна   2k + 1).  Тогда она может сделать
l = 2k  прыжков влево, а затем один прыжок вправо. В результате она сместится вправо на
(2k+l + 1) – (2k + 1) – (2k+1 + 1) – ... – (2k+l–1 + 1) = (2k+l – 2k – 2k+1 – ... – 2k+l–1) + 1 – 2k = 2k + 1 – 2k = 1,  что и требовалось.


Ответ

Может.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Вариант 2014/2015
этап
Вариант 5
класс
Класс 11
задача
Номер 11.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .