ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Верно ли, что высоты любого тетраэдра пересекаются в одной точке? Внутри угла расположены две окружности с центрами A, B, которые касаются друг друга и сторон угла. Докажите, что окружность с диаметром AB касается сторон угла. Дан трёхгранный угол. Рассмотрим три плоскости, содержащие его грани. Эти плоскости разбивают пространство на восемь трёхгранных углов. а) Найдите плоские углы всех образовавшихся трёхгранных углов, если плоские углы исходного трёхгранного угла равны x , y и z . б) Найдите двугранные углы всех образовавшихся трёхгранных углов, если двугранные углы исходного трёхгранного угла равны α , β и γ . Дан выпуклый четырёхугольник ABCD с попарно непараллельными сторонами. На стороне AD выбирается произвольная точка P, отличная от A и D. Описанные окружности треугольников ABP и CDP вторично пересекаются в точке Q. Докажите, что прямая PQ проходит через фиксированную точку, не зависящую от выбора точки P. Докажите, что если четырёхугольник вписан в окружность, то сумма произведений длин двух пар его противоположных сторон равна произведению длин его диагоналей. Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$ В треугольнике ABC даны три стороны: AB = 26, BC = 30 и AC = 28. Найдите часть площади этого треугольника, заключённую между высотой и биссектрисой, проведёнными из вершины B. В круге проведены два перпендикулярных диаметра,
т. е. четыре радиуса, а затем построены четыре круга, диаметрами которых
служат эти радиусы. Докажите, что суммарная площадь попарно общих
частей этих кругов равна площади
части исходного круга, лежащей вне рассматриваемых четырех
кругов (рис.).
В парке росли липы и клены. Кленов среди них было 60%. Весной в парке посадили липы, после чего кленов стало 20%. А осенью посадили клены, и кленов стало снова 60%. Во сколько раз увеличилось количество деревьев в парке за год? В пирамиде ABCD двугранные углы с рёбрами AB , BC и CA равны α1 , α2 и α3 соответственно, а площади треугольников ABD , BCD и CAD равны соответственно S1 , S2 и S3 . Площадь треугольника ABC равна S . Докажите, что S = S1 cos α1 + S2 cos α2 + S3 cos α3 (некоторые из углов α1 , α2 и α3 могут быть тупыми). Дан треугольник ABC, причём сторона BC равна полусумме двух других сторон. Доказать, что в таком треугольнике вершина A, середины сторон AB и AC и центры вписанной и описанной окружностей лежат на одной окружности (сравните с задачей 4 для 9 класса).
В параллелограмме со сторонами 2 и 4 проведена диагональ, равная 3. В каждый из получившихся треугольников вписано по окружности. Найдите расстояние между центрами окружностей.
Пит М. на квадратном холсте нарисовал композицию из прямоугольников. На рисунке даны площади нескольких прямоугольников, в том числе синего и красного квадратов. Чему равна сумма площадей двух серых прямоугольников? |
Задача 66635
УсловиеПит М. на квадратном холсте нарисовал композицию из прямоугольников. На рисунке даны площади нескольких прямоугольников, в том числе синего и красного квадратов. Чему равна сумма площадей двух серых прямоугольников? РешениеСторона синего квадрата равна $2$, поэтому стороны чёрного прямоугольника равны $2$ и $4$. Площадь бело-чёрно-синего прямоугольника равна $36$, а его вертикальная сторона $2+4=6$. Значит, это квадрат, и его горизонтальная сторона также равна $6$. Красный квадрат имеет сторону $7$, значит, сторона всего полотна составляет $6+7=13$. Наконец, площадь серых прямоугольников есть разность площади правой «половины» полотна и бело-чёрно-синего квадрата: $6 \cdot 13 - 36 =42$. Ответ$42$. ЗамечанияЭто задача по мотивам абстрактных картин нидерландского художника Пита Мондриана (ниже приведена «Композиция с красным, синим и желтым» 1930 года).Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке