Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Шень А.Х.

Есть бесконечная в одну сторону клетчатая полоска, клетки которой пронумерованы натуральными числами, и мешок с десятью камнями. В клетках полоски камней изначально нет. Можно делать следующее:

– перемещать камень из мешка в первую клетку полоски или обратно;

– если в клетке с номером $i$ лежит камень, то можно переложить камень из мешка в клетку с номером $i + 1$ или обратно.

Можно ли, действуя по этим правилам, положить камень в клетку с номером 1000?

Вниз   Решение


Профессор Тестер проводит серию тестов, на основании которых он выставляет испытуемому средний балл. Закончив отвечать, Джон понял, что если бы он получил за последний тест 97 очков, то его средний балл составил бы 90; а если бы он получил за последний тест всего 73 очка, то его средний балл составил бы 87. Сколько тестов в серии профессора Тестера?

ВверхВниз   Решение


К плоскости приклеены два непересекающихся деревянных круга одинакового размера – серый и чёрный. Дан деревянный треугольник, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи треугольника, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершинах). Докажите, что прямая, содержащая биссектрису угла между серой и чёрной сторонами, всегда проходит через одну и ту же точку плоскости.

ВверхВниз   Решение


На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что  MC = AC  и  NB = AB.  Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN.

ВверхВниз   Решение


Автор: Шень А.Х.

а) В классе была дана контрольная. Известно, что по крайней мере ⅔ задач этой контрольной оказались трудными: каждую такую задачу не решили по крайней мере ⅔ школьников. Известно также, что по крайней мере ⅔ школьников класса написали контрольную хорошо: каждый такой школьник решил по крайней мере ⅔ задач контрольной. Могло ли такое быть?

Изменится ли ответ, если везде в условии заменить ⅔ на   б) ¾;   в) 7/10?

ВверхВниз   Решение


Последовательность Морса. Бесконечная последовательность из нулей и единиц

0110 1001 1001 0110 1001...

построена по следующему правилу. Сначала написан нуль. Затем делается бесконечное количество шагов. На каждом шаге к уже написанному куску последовательности приписывается новый кусок той же длины, получаемый из него заменой всех нулей единицами, а единиц — нулями.
а) Какая цифра стоит на 2001 месте?
б) Будет ли эта последовательность, начиная с некоторого места, периодической?
в) Докажите, что данная последовательность переходит в себя при замене каждого нуля на комбинацию 01, а каждой единицы — на комбинацию 10.
г) Докажите, что ни одно конечно слово из нулей и единиц не встречается в последовательности Морса три раза подряд.
д) Как, зная представление числа n в двоичной системе счисления, найти n-й элемент данной последовательности?

ВверхВниз   Решение


Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком плюс, а участки пути, по которым мы удалялись от центра, — со знаком минус. Докажите, что для любого такого пути сумма длин участков пути, взятых с указанными знаками, равна нулю.

ВверхВниз   Решение


В треугольнике ABC  O, M, N – центр описанной окружности, центр тяжести и точка Нагеля соответственно.
Докажите, что угол MON прямой тогда и только тогда, когда один из углов треугольника равен 60°.

ВверхВниз   Решение


На плоскости нельзя расположить семь прямых и семь точек так, чтобы через каждую из точек проходили три прямые и на каждой прямой лежали три точки. Докажите это.

Вверх   Решение

Задача 73571
Темы:    [ Системы точек и отрезков (прочее) ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

На плоскости нельзя расположить семь прямых и семь точек так, чтобы через каждую из точек проходили три прямые и на каждой прямой лежали три точки. Докажите это.

Решение

Предположим, что такое расположение семи точек и семи прямых существует. Прежде всего докажем, что каждые две из данных точек лежат на одной из данных прямых. Действительно, если A – одна из этих точек, то через A проходят три прямые, и на каждой из них лежит по две из данных точек (не считая A ); тем самым A и любая из шести точек, отличных от A , лежат на одной из данных прямых. Точно так же доказывается, что каждые две из данных прямых пересекаются в одной из данных точек: если a – одна из прямых, то через каждую из трех лежащих на ней точек проходит по две прямые (не считая a ), и поэтому каждая из этих прямых пересекается с a в одной из данных точек. Ниже дана подпись к рис.2 и 3 Рис.2. Выпуклой оболочкой множества из конечного числа точек является выпуклый многоугольник с вершинами в некоторых из этих точек (или отрезок, если все точки лежат на одной прямой). Рис.3. Эта конфигурация почти полностью удовлетворяет требованиям задачи М36, только одну "прямую" пришлось изогнуть.

Источники и прецеденты использования

журнал
Название "Квант"
год
Год 1970
выпуск
Номер 8
Задача
Номер М36

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .