Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 15 задач
Версия для печати
Убрать все задачи

На каждой клетке доски 10×10 стоит фишка. Разрешается выбрать диагональ, на которой стоит чётное число фишек, и снять с неё любую фишку.
Какое наибольшее число фишек можно убрать с доски такими операциями?

Вниз   Решение


На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

ВверхВниз   Решение


Разложить на целые рациональные множители выражение  a10 + a5 + 1.

ВверхВниз   Решение


На сторонах треугольника ABC внешним образом построены правильные треугольники A1BC, AB1C и ABC1. Докажите, что AA1 = BB1 = CC1.

ВверхВниз   Решение


На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCP и CDQ. Докажите, что треугольник APQ правильный.

ВверхВниз   Решение


На бирже Цветочного города 1 лимон и 1 банан можно обменять на 2 апельсина и 23 вишни, а 3 лимона – на 2 банана, 2 апельсина и 14 вишен. Что дороже: лимон или банан?

ВверхВниз   Решение


Точки А, В и С лежат на прямой m, а точки D и Е на ней не лежат. Известно, что AD = AE и BD = BE. Докажите, что CD = CE.

ВверхВниз   Решение


Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.

ВверхВниз   Решение


Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
  а) (2n+1)-угольника;  б) 2n-угольника?

ВверхВниз   Решение


Решите неравенство:
|x + 2000| < |x - 2001|.

ВверхВниз   Решение


Число y получается из натурального числа x некоторой перестановкой его цифр. Докажите, что каково бы ни было x,  

ВверхВниз   Решение


Докажите, что при повороте x'' = x'cosφ + y'sinφ,  y'' = - x'sinφ + y'cosφ выражение ax'2 + 2bx'y' + cy'2 переходит в a1x'2 + 2b1x''y'' + c1y'2, причём a1c1 - b12 = ac - b2.

ВверхВниз   Решение


В пачке 20 карточек: синие, красные и желтые. Синих в шесть раз меньше, чем желтых, и красных меньше, чем желтых. Какое наименьшее количество карточек надо вытащить не глядя, чтобы среди них обязательно оказалась красная?

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника взаимно перпендикулярны. Докажите, что четыре проекции точки пересечения диагоналей на стороны четырёхугольника лежат на одной окружности.

ВверхВниз   Решение


Автор: Лысов Ю.П.

На окружности расположено множество F точек, состоящее из 100 дуг. При любом повороте R окружности множество R(F) имеет хотя бы одну общую точку с множеством F. (Другими словами, для любого угла α от 0° до 180° в множестве F можно указать две точки, отстоящие одна от другой на угол α.) Какую наименьшую сумму длин могут иметь 100 дуг, образующих множество F? Каков будет ответ, если дуг не 100, а n?

Вверх   Решение

Задача 73700
Темы:    [ Принцип Дирихле (углы и длины) ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Подсчет двумя способами ]
Сложность: 5
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Автор: Лысов Ю.П.

На окружности расположено множество F точек, состоящее из 100 дуг. При любом повороте R окружности множество R(F) имеет хотя бы одну общую точку с множеством F. (Другими словами, для любого угла α от 0° до 180° в множестве F можно указать две точки, отстоящие одна от другой на угол α.) Какую наименьшую сумму длин могут иметь 100 дуг, образующих множество F? Каков будет ответ, если дуг не 100, а n?

Решение

Решим задачу для n дуг. Обозначим сумму длин n дуг, образующих множество F через S (Поскольку нас интересует только относительная длина дуг, мы будем измерять ее в градусах.) .

S может быть сколь угодно близко к . Достаточно привести пример: располагаем (n-1) дугу, длина каждой из которых равна так, чтобы центры любых двух соседних отстояли на , а за (n-1) -й помещаем n -ю дугу с длиной так, чтобы расстояние между их ближайшими концами равнялось .

Легко проверяется, что указанная система дуг удовлетворяет условию задачи. При соответствующем выборе a0 сумма длин дуг будет как угодно близка к .

Если же точку на окружности считать дугой нулевой длины, то, заменив в примере все дуги, кроме последней, на точки, получаем множество F с суммой длин дуг, равной (рис.1).

Докажем, что сумма S длин дуг не может быть меньше этого числа. Представим себе, что мы имеем два экземпляра нашей окружности, на которых размещены те же самые n дуг. Повернем одну из окружностей на угол ϕ , 0< ϕ<360o . Рассмотрим множество Uij всех таких значений ϕ , для которых при таком повороте i -я дуга повернутой окружности пересекается с j -й дугой неподвижной окружности. Нарисуем отдельно "контрольную" окружность (с выбранной на ней начальной точкой ϕ=0 (рис.2)) и отметим на ней множества Uij для всех i, j от 1 до n . Ясно, что Uij является дугой с длиной, равной сумме длин i -й и j -й дуг.

Отмеченные множества Uij должны заполнять всю "контрольную" окружность, так как при любом повороте какие-то две дуги нашего множества должны пересекаться, поэтому сумма длин всех Uij не меньше 360o . С другой стороны, эта сумма равна 2n · S , так как каждая дуга множества входит в сумму 2n раз.

Отсюда получаем, что S = . Нетрудно заметить, что неравенство должно быть строгим (если отдельные точки не считать дугами), так как любые две области Uii и Ujj имеют общий участок, содержащий начало отсчета.

Источники и прецеденты использования

журнал
Название "Квант"
год
Год 1972
выпуск
Номер 9
Задача
Номер М165

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .