Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

7 волков съедают 7 баранов за 7 дней. За сколько дней 9 волков съедят 9 баранов?

Вниз   Решение


Теннисист для тренировки играет каждый день хотя бы одну партию; при этом, чтобы не перетрудиться, он играет не более 12 партий в неделю.
Докажите, что можно найти несколько таких подряд идущих дней, в течение которых теннисист сыграл ровно двадцать партий.

ВверхВниз   Решение


Известно, что натуральное число n в 3 раза больше суммы своих цифр. Докажите, что n делится на 27.

ВверхВниз   Решение


Улитка проснулась, доползла от гриба до родника и уснула. Путешествие заняло шесть часов. Улитка ползла то быстрее, то медленнее, останавливалась. За улиткой наблюдали несколько учёных. Известно, что:
  1) В каждый момент путешествия улитку наблюдал хотя бы один учёный.
  2) Каждый учёный наблюдал неспящую улитку в течение одного часа (без перерыва) и говорит, что за это время улитка проползла ровно один метр.
Каково наибольшее возможное расстояние от гриба до родника?

ВверхВниз   Решение


Существует ли такое значение x, что выполняется равенство  arcsin2x + arccos2x = 1?

ВверхВниз   Решение


Даны точки A и B. Где на прямой AB расположены точки, расстояние от которых до точки B больше, чем до точки A?

ВверхВниз   Решение


При организации экспедиции на Эверест участниками было установлено четыре высотных лагеря (не считая базового), на растоянии дня пути друг от друга, после чего все спустились вниз. Пересчитав запасы, руководитель решил, что надо занести еще один баллон кислорода в четвертый лагерь, а потом всем опять вернуться вниз на отдых. При этом каждый участник
1) может нести вверх не больше трех баллонов,
2) сам тратит в день ровно один баллон кислорода.
Какое наименьшее количество баллонов придется взять из лагеря для достижения поставленной цели? (Оставлять баллоны можно только в лагерях.)

ВверхВниз   Решение


По кругу написано семь натуральных чисел. Докажите, что найдутся два соседних числа, сумма которых чётна.

ВверхВниз   Решение


Встретились несколько аборигенов (каждый — либо лжец, либо — рыцарь), и каждый заявил всем остальным: «Вы все — лжецы». Сколько рыцарей было среди них?

ВверхВниз   Решение


Доказать, что уравнение  19x² – 76y² = 1976  не имеет решений в целых числах.

ВверхВниз   Решение


На каждой клетке доски размером 9×9 сидит жук, По свистку каждый из жуков переползает в одну из соседних по диагонали клеток. При этом в некоторых клетках может оказаться больше одного жука, а некоторые клетки окажутся незанятыми.
Докажите, что при этом незанятых клеток будет не меньше 9.

ВверхВниз   Решение


Разбейте куб на три пирамиды.

ВверхВниз   Решение


Имеется 4n положительных чисел, таких, что из любых четырёх попарно различных можно составить геометрическую прогрессию. Доказать, что среди этих чисел найдется n одинаковых.

Вверх   Решение

Задача 77888
Темы:    [ Геометрическая прогрессия ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 9
Из корзины
Прислать комментарий

Условие

Имеется 4n положительных чисел, таких, что из любых четырёх попарно различных можно составить геометрическую прогрессию. Доказать, что среди этих чисел найдется n одинаковых.

Решение

Покажем, что среди данных чисел не может быть больше четырёх попарно различных чисел. Объединим равные числа в группы, выберем в каждой группе по одному числу и расположим выбранные числа в порядке убывания: a > b > c > d > e > .... Числа a, b, c, d по условию образуют геометрическую прогрессию. Но ab > cd и ac > bd, поэтому ad = bc, т.е. d = bc/a. Те же самые рассуждения показывают, что e = bc/a.
Также доступны документы в формате TeX

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 12
Год 1949
вариант
Класс 9,10
Тур 1
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .