Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Произведение некоторых 1986 натуральных чисел имеет ровно 1985 различных простых делителей.
Доказать, что либо одно из этих чисел, либо произведение нескольких из них является квадратом натурального числа.

Вниз   Решение


Внутри равностороннего треугольника ABC находится точка O. Прямая OG, соединяющая O с центром тяжести (точкой пересечения медиан) G треугольника, пересекает стороны треугольника (или их продолжения) в точках A', B', C'. Доказать, что

$\displaystyle {\frac{OA'}{GA'}}$ + $\displaystyle {\frac{OB'}{GB'}}$ + $\displaystyle {\frac{OC'}{GC'}}$ = 3.

ВверхВниз   Решение


Число x оканчивается на 5. Доказать, что x² оканчивается на 25.

ВверхВниз   Решение


На плоскости даны четыре прямые, из которых никакие две не параллельны, и никакие три не пересекаются в одной точке. По каждой прямой с постоянной скоростью идёт пешеход. Известно, что первый встречается со вторым, с третьим и с четвёртым, а второй встречается с третьим и с четвёртым. Доказать, что третий пешеход встретится с четвёртым.

ВверхВниз   Решение


Произведение некоторых 48 натуральных чисел имеет ровно 10 различных простых делителей.
Докажите, что произведение некоторых четырёх из этих чисел является квадратом натурального числа.

ВверхВниз   Решение


Проекции плоского выпуклого многоугольника на ось OX, биссектрису 1-го и 3-го координатных углов, ось OY и биссектрису 2-го и 4-го координатных углов соответственно равны 4, 3$ \sqrt{2}$, 5, 4$ \sqrt{2}$. Площадь многоугольника равна S. Доказать, что S$ \ge$10.

ВверхВниз   Решение


Плоский многоугольник A1A2...An составлен из n твёрдых стержней, соединенных шарнирами. Доказать, что если n > 4, то его можно деформировать в треугольник.

ВверхВниз   Решение


10 книг стоят больше 11 рублей, а 9 книг стоят меньше 10 рублей. Сколько стоит одна книга?

ВверхВниз   Решение


Решить в натуральных числах уравнение  x2y–1 + (x + 1)2y–1 = (x + 2)2y–1.

ВверхВниз   Решение


Можно ли какой-нибудь невыпуклый 5-угольник разрезать на два равных 5-угольника?

ВверхВниз   Решение


Доска размером 2005×2005 разделена на квадратные клетки со стороной единица. Некоторые клетки доски в каком-то порядке занумерованы числами 1, 2, ... так, что на расстоянии, меньшем 10, от любой незанумерованной клетки найдется занумерованная клетка. Докажите, что найдутся две клетки на расстоянии, меньшем 150, которые занумерованы числами, различающимися более, чем на 23. (Расстояние между клетками – это расстояние между их центрами.)

ВверхВниз   Решение


Существует ли такое натуральное x, что  x² + x + 1  делится на 1985?

ВверхВниз   Решение


В прямоугольнике с целыми сторонами m и n, нарисованном на клетчатой бумаге, проведена диагональ.
  а) Через какое число узлов она проходит?
  б) На сколько частей эта диагональ делится линиями сетки?

ВверхВниз   Решение


Обозначим через a наименьшее число кругов радиуса 1, которыми можно полностью покрыть заданный многоугольник M, через b — наибольшее число непересекающихся кругов радиуса 1 с центрами внутри многоугольника M. Какое из чисел больше, a или b?

Вверх   Решение

Задача 78162
Темы:    [ Покрытия ]
[ Геометрические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Обозначим через a наименьшее число кругов радиуса 1, которыми можно полностью покрыть заданный многоугольник M, через b — наибольшее число непересекающихся кругов радиуса 1 с центрами внутри многоугольника M. Какое из чисел больше, a или b?

Решение

Ответ: a$ \ge$b. Рассмотрим произвольную расстановку непересекающихся кругов радиуса 1 с центрами (обозначим их через Ai), лежащими внутри многоугольника M. Тогда все Ai лежат внутри многоугольника M и расстояние между любыми двумя из них больше 2. А значит, в любом круге покрытия многоугольника M кругами радиуса 1 может содержаться не более одной из точек Ai. Тем самым получили, что a$ \ge$b.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 21
Год 1958
вариант
Класс 9
Тур 2
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .