Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

Женя не успел влезть в лифт на первом этаже дома и решил пойти по лестнице. На третий этаж он поднимается за 2 минуты. Сколько времени у него займет подъем до девятого этажа?

Вниз   Решение


Автор: Купцов Л.

Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности.

ВверхВниз   Решение


  а) Сколькими способами Дима сможет покрасить пять ёлок в серебристый, зеленый и синий цвета, если количество краски у него неограничено, а каждую ёлку он красит только в один цвет?
  б) У Димы есть пять шариков: красный, зеленый, желтый, синий и золотой. Сколькими способами он сможет украсить ими пять ёлок, если на каждую требуется надеть ровно один шарик?
  в) А если можно надевать несколько шариков на одну ёлку (и все шарики должны быть использованы)?

ВверхВниз   Решение


Когда из бассейна сливают воду, уровень h воды в нём меняется в зависимости от времени t по закону

h(t)=at2+bt+c,

а в момент t0 окончания слива выполнены равенства h(t0)=h'(t0)=0 . За сколько часов вода из бассейна сливается полностью, если за первый час уровень воды в нём уменьшается вдвое?

ВверхВниз   Решение


Автор: Карасев Р.

Докажите, что для любого натурального  n > 2  число     делится на 8.

ВверхВниз   Решение


Найдите все натуральные числа n, для которых сумма цифр числа 5n равна 2n.

ВверхВниз   Решение


Дана бесконечная последовательность чисел  a1, a2, a3, ...  Известно, что для любого номера k можно указать такое натуральное число t, что
ak = ak+t = ak+2t = ...  Обязательно ли тогда эта последовательность периодическая, то есть существует ли такое натуральное T, что  ak = ak+T  при любом натуральном k?

ВверхВниз   Решение


Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов.

ВверхВниз   Решение


Малый и Большой острова имеют прямоугольную форму и разделены на прямоугольные графства. В каждом графстве проложена дорога по одной из диагоналей. На каждом острове эти дороги образуют замкнутый путь, который ни через какую точку не проходит дважды. Вот как устроен Малый остров, где всего шесть графств (см. рис.).

Нарисуйте, как может быть устроен Большой остров, если на нём нечётное число графств. Сколько графств у вас получилось?

ВверхВниз   Решение


Можно ли разрезать квадратный пирог на 9 равновеликих частей таким способом: выбрать внутри квадрата две точки и соединить каждую из них прямолинейными разрезами со всеми четырьмя вершинами квадрата? Если можно, то какие две точки нужно выбрать?

Вверх   Решение

Задача 78606
Темы:    [ Свойства частей, полученных при разрезаниях ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Можно ли разрезать квадратный пирог на 9 равновеликих частей таким способом: выбрать внутри квадрата две точки и соединить каждую из них прямолинейными разрезами со всеми четырьмя вершинами квадрата? Если можно, то какие две точки нужно выбрать?

Решение

Предположим, что можно выбрать две точки требуемым образом. Отрезки, соединяющие одну из этих точек с вершинами квадрата, разбивают квадрат на 4 треугольника. При этом сумма площадей треугольников, примыкающих к каждой паре противоположных сторон квадрата, равна 1/2. Отрезки, соединяющие вторую выбранную точку с вершинами квадрата, разбивают одну из этих пар треугольников на 4 части, а другую — на 5 частей. С одной стороны, сумма четырёх частей равна $ {\frac{1}{2}}$, а с другой стороны, она должна быть равна $ {\frac{4}{9}}$. Приходим к противоречию.

Ответ

Нельзя.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 30
Год 1967
вариант
1
Класс 9
Тур 1
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .