Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

На каждой клетке доски 10×10 стоит фишка. Разрешается выбрать диагональ, на которой стоит чётное число фишек, и снять с неё любую фишку.
Какое наибольшее число фишек можно убрать с доски такими операциями?

Вниз   Решение


На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

ВверхВниз   Решение


Разложить на целые рациональные множители выражение  a10 + a5 + 1.

ВверхВниз   Решение


На сторонах треугольника ABC внешним образом построены правильные треугольники A1BC, AB1C и ABC1. Докажите, что AA1 = BB1 = CC1.

ВверхВниз   Решение


На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCP и CDQ. Докажите, что треугольник APQ правильный.

ВверхВниз   Решение


На бирже Цветочного города 1 лимон и 1 банан можно обменять на 2 апельсина и 23 вишни, а 3 лимона – на 2 банана, 2 апельсина и 14 вишен. Что дороже: лимон или банан?

ВверхВниз   Решение


Точки А, В и С лежат на прямой m, а точки D и Е на ней не лежат. Известно, что AD = AE и BD = BE. Докажите, что CD = CE.

ВверхВниз   Решение


Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.

ВверхВниз   Решение


Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
  а) (2n+1)-угольника;  б) 2n-угольника?

ВверхВниз   Решение


Решите неравенство:
|x + 2000| < |x - 2001|.

ВверхВниз   Решение


Число y получается из натурального числа x некоторой перестановкой его цифр. Докажите, что каково бы ни было x,  

Вверх   Решение

Задача 78617
Темы:    [ Десятичная система счисления ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Число y получается из натурального числа x некоторой перестановкой его цифр. Докажите, что каково бы ни было x,  


Решение

См. задачу 97958.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 30
Год 1967
вариант
1
Класс 7
Тур 2
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .