ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Слободник С.Г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 4]      



Задача 65410

Темы:   [ Площадь и ортогональная проекция ]
[ Параллелограмм Вариньона ]
[ Малые шевеления ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь.
Докажите, что эта плоскость параллельна либо одной из граней, либо двум скрещивающимся ребрам пирамиды.

Прислать комментарий     Решение

Задача 109197

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Площадь сечения ]
[ Объем помогает решить задачу ]
[ Призма (прочее) ]
[ Пирамида (прочее) ]
Сложность: 4-
Классы: 10,11

Можно ли разбить какую-нибудь призму на непересекающиеся пирамиды, у каждой из которых основание лежит на одном из оснований призмы, а противоположная вершина – на другом основании призмы?

Прислать комментарий     Решение

Задача 111686

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
[ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Даны положительные числа  a1, a2, ..., an.  Известно, что  a1 + a2 + ... + an ≤ ½.  Докажите, что  (1 + a1)(1 + a2)...(1 + an) < 2.

Прислать комментарий     Решение

Задача 73771

Темы:   [ Десятичная система счисления ]
[ Шахматные доски и шахматные фигуры ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4+
Классы: 8,9,10

а) Имеется 51 двузначное число. Докажите, что из этих чисел можно выбрать по крайней мере 6 чисел так, чтобы никакие два из выбранных чисел ни в одном разряде не имели одинаковой цифры.

б) Даны натуральные числа k и n, причём  1 < k < n.  Для какого наименьшего m верно следующее утверждение: при любой расстановке m ладей на доске размером n×n клеток можно выбрать k ладей из этих m так, чтобы никакие две из этих выбранных ладей не били друг друга?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .