ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Чеканов Ю.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 3]      



Задача 107755

Темы:   [ Неравенство треугольника (прочее) ]
[ Теория игр (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3+
Классы: 7,8,9

У Коли есть отрезок длины k, а у Лёвы — отрезок длины l. Сначала Коля делит свой отрезок на три части, а потом Лёва делит на три части свой отрезок. Если из получившихся шести отрезков можно сложить два треугольника, то выигрывает Лёва, а если нет — Коля. Кто из играющих, в зависимости от отношения k/l, может обеспечить себе победу, и как ему следует играть?
Прислать комментарий     Решение


Задача 111689

Темы:   [ Разрезания на параллелограммы ]
[ Перегруппировка площадей ]
[ Монотонность и ограниченность ]
Сложность: 4-
Классы: 8,9,10,11

Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади любой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.

Прислать комментарий     Решение

Задача 107780

Темы:   [ Геометрия на клетчатой бумаге ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 7,8,9

Прямоугольник размером 1×k при всяком натуральном k будем называть полоской. При каких натуральных n прямоугольник размером 1995×n можно разрезать на попарно различные полоски?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .