ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Мерзон Г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 5]      



Задача 65604

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 5,6,7,8

Автор: Мерзон Г.

Сложите из трёх одинаковых клетчатых фигур без оси симметрии фигуру с осью симметрии.

Прислать комментарий     Решение

Задача 64438

Темы:   [ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Мерзон Г.

Отличник Вася складывает обыкновенные дроби без ошибок, а Петя складывает дроби так: в числитель пишет сумму числителей, а в знаменатель – сумму знаменателей. Учительница предложила ребятам сложить три несократимые дроби. У Васи получился правильный ответ 1. Мог ли у Пети получиться ответ меньше 1/10?

Прислать комментарий     Решение

Задача 65420

Темы:   [ Правильный тетраэдр ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Автор: Мерзон Г.

Разрежьте правильный тетраэдр на равные многогранники с шестью гранями.

Прислать комментарий     Решение

Задача 65627

Темы:   [ Замощения костями домино и плитками ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 5,6,7

Вася нарисовал карандашом разбиение клетчатого прямоугольника на прямоугольники размером 3×1 (тримино), закрасил ручкой центральную клетку каждого из получившихся прямоугольников, после чего стер карандашные линии. Всегда ли можно восстановить исходное разбиение?

Прислать комментарий     Решение

Задача 116813

Темы:   [ Треугольники с углами 60° и 120° ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Мерзон Г.

Равнобедренный треугольник с углом 120° сложен ровно из трёх слоёв бумаги. Треугольник развернули – и получился прямоугольник. Нарисуйте такой прямоугольник и покажите пунктиром линии сгиба.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .