ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность высекает на всех четырех сторонах четырехугольника равные хорды. Докажите, что в этот четырехугольник можно вписать окружность.

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 20]      



Задача 57010

Тема:   [ Описанные четырехугольники ]
Сложность: 2+
Классы: 8,9

Четырехугольник ABCD описан около окружности с центром O. Докажите, что  $ \angle$AOB + $ \angle$COD = 180o.
Прислать комментарий     Решение


Задача 57009

Тема:   [ Описанные четырехугольники ]
Сложность: 3
Классы: 8,9

Докажите, что если центр вписанной в четырехугольник окружности совпадает с точкой пересечения диагоналей, то этот четырехугольник — ромб.
Прислать комментарий     Решение


Задача 57011

Темы:   [ Описанные четырехугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Докажите, что если существует окружность, касающаяся всех сторон выпуклого четырехугольника ABCD, и окружность, касающаяся продолжений всех его сторон, то диагонали такого четырехугольника перпендикулярны.
Прислать комментарий     Решение


Задача 57012

Тема:   [ Описанные четырехугольники ]
Сложность: 3
Классы: 8,9

Окружность высекает на всех четырех сторонах четырехугольника равные хорды. Докажите, что в этот четырехугольник можно вписать окружность.
Прислать комментарий     Решение


Задача 55451

 [Теорема Ньютона.]
Темы:   [ Три точки, лежащие на одной прямой ]
[ ГМТ - прямая или отрезок ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .