Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Изобразите на комплексной плоскости множество точек z, удовлетворяющих условию  |z – 1 – i| = 2|z + 1 – i|.

Вниз   Решение


В прямоугольной трапеции основания равны 17 и 25, а большая боковая сторона равна 10. Через середину M этой стороны проведён к ней перпендикуляр, пересекающий продолжение второй боковой стороны в точке P. Найдите MP.

ВверхВниз   Решение


В остроугольном треугольнике ABC точка D выбрана на стороне AB так, что $ \angle$DCA = 45o. Точка D1 симметрична точке D относительно прямой BC, а точка D2 симметрична точке D1 относительно прямой AC и лежит на продолжении отрезка BC за точку C. Найдите площадь треугольника ABC, если BC = $ \sqrt{3}$CD2, AB = 4.

ВверхВниз   Решение


Число n называется совершенным, если  σ(n) = 2n.
Докажите, что если  2k – 1 = p  – некоторое простое число Мерсенна, то  n = 2k–1(2k – 1)  – совершенное число.

ВверхВниз   Решение


Докажите. что если в трапеции ABCD середину M одной боковой стороны AB соединить с концами другой боковой стороны CD, то площадь полученного треугольника CMD составит половину площади трапеции.

ВверхВниз   Решение


На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что  AC = 1,   BC = 3.
В каком отношении делит сторону DE биссектриса угла C?

ВверхВниз   Решение


Из одинакового количества квадратов со сторонами 1, 2 и 3 составьте квадрат наименьшего возможного размера.

ВверхВниз   Решение


Доказать, что в любом треугольнике имеет место неравенство: R$ \ge$2r (R и r — радиусы описанного и вписанного кругов соответственно), причем равенство R = 2r имеет место только для правильного треугольника.

ВверхВниз   Решение


Требуется разделить криволинейный треугольник на рисунке на 2 части одинаковой площади, проведя одну линию циркулем. Это можно сделать, выбрав в качестве центра одну из отмеченных точек и проводя дугу через другую отмеченную точку. Найдите способ это сделать и докажите, что он подходит.

ВверхВниз   Решение


Докажите, что многочлен  x12x9 + x4x + 1  при всех значениях x положителен.

ВверхВниз   Решение


Даны два треугольника A1A2A3 и B1B2B3. "Опишите" вокруг треугольника A1A2A3 треугольник M1M2M3 наибольшей площади, подобный треугольнику B1B2B3 (вершина A1 должна лежать на прямой M2M3, вершина A2 – на прямой A1A3, вершина A3 – на прямой A1A2).

ВверхВниз   Решение


Докажите, что для положительных чисел x1, x2, ..., xn, не превосходящих 1, выполнено неравенство
   

ВверхВниз   Решение


Докажите равенство:

ctg 30o + ctg 75o = 2.


ВверхВниз   Решение


Окружность высекает на всех четырех сторонах четырехугольника равные хорды. Докажите, что в этот четырехугольник можно вписать окружность.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 20]      



Задача 57010

Тема:   [ Описанные четырехугольники ]
Сложность: 2+
Классы: 8,9

Четырехугольник ABCD описан около окружности с центром O. Докажите, что  $ \angle$AOB + $ \angle$COD = 180o.
Прислать комментарий     Решение


Задача 57009

Тема:   [ Описанные четырехугольники ]
Сложность: 3
Классы: 8,9

Докажите, что если центр вписанной в четырехугольник окружности совпадает с точкой пересечения диагоналей, то этот четырехугольник — ромб.
Прислать комментарий     Решение


Задача 57011

Темы:   [ Описанные четырехугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Докажите, что если существует окружность, касающаяся всех сторон выпуклого четырехугольника ABCD, и окружность, касающаяся продолжений всех его сторон, то диагонали такого четырехугольника перпендикулярны.
Прислать комментарий     Решение


Задача 57012

Тема:   [ Описанные четырехугольники ]
Сложность: 3
Классы: 8,9

Окружность высекает на всех четырех сторонах четырехугольника равные хорды. Докажите, что в этот четырехугольник можно вписать окружность.
Прислать комментарий     Решение


Задача 55451

 [Теорема Ньютона.]
Темы:   [ Три точки, лежащие на одной прямой ]
[ ГМТ - прямая или отрезок ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .