ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Изобразите на комплексной плоскости множество точек z, удовлетворяющих условию |z – 1 – i| = 2|z + 1 – i|. В прямоугольной трапеции основания равны 17 и 25, а большая боковая сторона равна 10. Через середину M этой стороны проведён к ней перпендикуляр, пересекающий продолжение второй боковой стороны в точке P. Найдите MP.
В остроугольном треугольнике ABC точка D выбрана на стороне
AB так, что
Число n называется совершенным, если σ(n) = 2n.
Докажите. что если в трапеции ABCD середину M одной боковой стороны AB соединить с концами другой боковой стороны CD, то площадь полученного треугольника CMD составит половину площади трапеции.
На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что AC = 1, BC = 3. Из одинакового количества квадратов со сторонами 1, 2 и 3 составьте квадрат наименьшего возможного размера.
Доказать, что в любом треугольнике имеет место неравенство: R Требуется разделить криволинейный треугольник на рисунке на 2 части одинаковой площади, проведя одну линию циркулем. Это можно сделать, выбрав в качестве центра одну из отмеченных точек и проводя дугу через другую отмеченную точку. Найдите способ это сделать и докажите, что он подходит.
Докажите, что многочлен x12 – x9 + x4 – x + 1 при всех значениях x положителен. Даны два треугольника A1A2A3 и B1B2B3. "Опишите" вокруг треугольника A1A2A3 треугольник M1M2M3 наибольшей площади, подобный треугольнику B1B2B3 (вершина A1 должна лежать на прямой M2M3, вершина A2 – на прямой A1A3, вершина A3 – на прямой A1A2). Докажите, что для положительных чисел x1, x2, ..., xn, не превосходящих 1, выполнено неравенство
ctg 30o + ctg 75o = 2.
Окружность высекает на всех четырех сторонах
четырехугольника равные хорды. Докажите, что в этот четырехугольник
можно вписать окружность.
|
Страница: 1 2 3 4 >> [Всего задач: 20]
Четырехугольник ABCD описан около окружности
с центром O. Докажите, что
Докажите, что если центр вписанной в четырехугольник
окружности совпадает с точкой пересечения диагоналей, то этот
четырехугольник — ромб.
Докажите, что если существует окружность, касающаяся
всех сторон выпуклого четырехугольника ABCD, и окружность, касающаяся
продолжений всех его сторон, то диагонали такого четырехугольника
перпендикулярны.
Окружность высекает на всех четырех сторонах
четырехугольника равные хорды. Докажите, что в этот четырехугольник
можно вписать окружность.
Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.
Страница: 1 2 3 4 >> [Всего задач: 20]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке