ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 109704  (#99.5.9.6)

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Неравенство Коши ]
[ Подсчет двумя способами ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 8,9,10

Автор: Храбров А.

Докажите, что при любом натуральном n справедливо неравенство  

Прислать комментарий     Решение

Задача 108155  (#99.5.9.7)

Темы:   [ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Отношения линейных элементов подобных треугольников ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
Сложность: 4+
Классы: 8,9,10

Окружность S1, проходящая через вершины A и B треугольника ABC, пересекает сторону BC в точке D. Окружность S2, проходящая через вершины B и C, пересекает сторону AB в точке E и окружность S1 вторично в точке F. Оказалось, что точки A, E, D, C лежат на окружности S3 с центром O. Докажите, что угол BFO – прямой.

Прислать комментарий     Решение

Задача 109706  (#99.5.9.8)

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 7,8,9

В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо один, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .