ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 109172

Темы:   [ Замена переменных (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Многочлены (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 3
Классы: 9,10

Дан многочлен  x(x + 1)(x + 2)(x + 3).  Найти его наименьшее значение.

Прислать комментарий     Решение

Задача 79580

Темы:   [ Замена переменных ]
[ Тригонометрия (прочее) ]
[ Геометрические интерпретации в алгебре ]
Сложность: 3+
Классы: 10,11

Найдите наибольшее значение выражения

x$\displaystyle \sqrt{1-y^2}$ + y$\displaystyle \sqrt{1-x^2}$.
Прислать комментарий     Решение

Задача 61295

Темы:   [ Тригонометрические замены ]
[ Иррациональные уравнения ]
Сложность: 4-
Классы: 9,10,11

Решите уравнение:

$\displaystyle \sqrt{\dfrac{1+2x\sqrt{1-x^2}}{2}}$ + 2x2 = 1.



Прислать комментарий     Решение

Задача 79520

Темы:   [ Тригонометрические замены ]
[ Алгебраические неравенства (прочее) ]
[ Тригонометрические неравенства ]
Сложность: 5-
Классы: 10,11

а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два числа x и y, что  0 ≤ ≤ 1.
б) Верно ли, что указанные два числа можно выбрать из любых четырёх чисел?

Прислать комментарий     Решение

Задача 98421

Темы:   [ Замена переменных ]
[ Квадратный трехчлен (прочее) ]
[ Возрастание и убывание. Исследование функций ]
[ Разрывы функций ]
Сложность: 5-
Классы: 9,10

Дана функция    ,   где трёхчлены  x² + ax + b  и  x² + cx + d  не имеют общих корней. Докажите, что следующие два утверждения равносильны:
  1) найдётся числовой интервал, свободный от значений функции;
  2)  f(x) представима в виде:  f(x) = f1(f2(...fn–1(fn(x))...)),  где каждая из функций  fi(x) есть функция одного из видов:   kix + bi, x–1, x².

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .